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The Problem

To measure physical parameters (temperature, pressure, strain, etc.) in extreme
temperature and highly corrosive environments.

Coal-Fired Boiler Plant Coal-Gasification Plant




The Proposed Solution

Passive Wireless Sensors
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The Initial Approach
Guided Mode Resonance Filters (GMRFs)
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Initial Approach

Transduction concept

* Periodic arrays on the order of the RF
wavelength generate a signature

* RF material properties change with
temperature

« Signature changes can be calibrated to
temperature

» Sensors can be designed to have

distinct signatures enabling multiplex
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Materials Characterization
Overview

Goal: Quantify temperature dependent RF material properties

e permittivity (&) and permeability (1) * & i_S the relatiye permittivi@y
e measure transmission and reflection thru * 4 is the relative permeab|||ty
samples to back out the conductivity * tano, and tan g are electric and

magnetic loss tangﬂents respectively
* 0,is dielectric conductivity, and w
is angular frequency
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Materials Characterization
Experimental results - SiC

* Dielectric constant and Loss computed from raw data (Sy;, S,;)
* loss increases significantly with temperature
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Materials Characterization
Experimental results

Conductivity vs temperature for SIC at 22 GHz
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Sensor Design
GMR sensor concept

Guided Mode Resonance (GMR)

e incident energy at a specific frequency is
couple into a transverse longitudinal mode,
creating a notch in the reflected response

 simple construction

* sensitive to angle of incidence
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Sensor Design
Alternative sensor conceplts

Element Resonance (SRR, dipole array etc.)
* less angle sensitive
e more complex geometry
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Sensor Design
Sensor testing

e room temperature evaluation
» baseline measurements
« validation of test setup

HP 8510C VNA

Styrofoam

Antennas

Horn Antennas



Sensor Design
Sensor testing

» measurement of reflected
energy vs frequency
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Sensor Design
Sensor testing

» Measurement of reflected energy
vs frequency

* 16 — 24 GHz
 baseline data for “no target”

» Metamaterial sensor response
compared to a metal plate

2" X 2” 411 X 417

e Sensor response is not discernable,
even at normal incidence
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Sensor Design
Challenges with GMR (Metamaterial) Approach

1) The sensor response was weak and
indistinguishable from background clutter. discriminat anal f
 Surface reflections swamped the GMR scriminate Sensor signat from

background reflections (frequency

response hifting. h s ot
» Material dielectric loss may prevent good shifting, harmonics,etc.)

coupling of the guided mode

= Need a unigque signature to

2) A working metamaterial sensor would have
to be very large to have a sufficient number =Need a device that does not rely

of periods upon periodic structures of integral
 Even a 4” x 4” sensor (approx 20 periods) bon p . g
) wavelength (single element devices)
had a response dominated by surface

reflections and edge effects

3) The sensor was angle sensitive.
* The sensor response changed or
disappeared with any deviation from exact
normal (90 degree) angle of incidence

= Need a device that does not
rely upon normal incidence of
Interrogating radio wave.



A New Wireless Sensor Design
Mechanically Modulated Antenna

e Each sensor is an antenna with a » Each antenna can be tuned to a
mechanical element which is interrogated unique frequency to multiplex
wirelessly by Doppler radar. several sensors with a single

« The mechanical element modulates the interrogator (radar)

frequency response of the antenna. e Each sensor has a unique
signature outside spectral range

* The modulation frequency changes
- d y J of background reflections

with temperature of the antenna.

* Modulation shifts the reflected Mechanically
Modulated
Antenna

High Temperature Chamber

frequency away from the center with Dielectric Wall
frequency of the Doppler radar,,
i
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Initial Sensor Geometry

Ground
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Slot Antenna Close-Up

Semi-rigid
Coaxial Cable

FEA predicts beam natural frequency of 1980 Hz.

Vibration Beam

18



Interrogator Design
Doppler RADAR

Acoustic
Source _,;f@
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 Acoustic excitation (1800 Hz)
* Doppler RF interrogation (10 GHz)




FEKO Simulation Results

Beam displacement changes antenna impedance
and modulates antenna center frequency.
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Experimental Results
Mechanically Modulated Antenna

Normal incidence 70° incidence
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MMA Experimental Results

Acoustic Excitation

Sensor . 1 S | .-' Remote
* RF Doppler placed 30 cm from \ R Acoustic
target with 15 dBm power (30 mW) o= I '7 | e
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* Better acoustic capture efficiency
when mounted on cardboard
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Dipole Antenna Design

Objective: determine if amplitude
or phase modulation dominates.

w0 Frequency vs RCS with varying swing

O Zero swing
*  -05mm swing
Hl.Amm swing

Height 1.12 cm
Stub tuner: 0.47 cm long

Resonates electrically
around 16 GHz

1 1 1 | 1 1
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Frequency [Hz) « 10"

23



Dipole antenna

Assumes interrogator uses horn antenna with 15 dBi gain and 2W output.

Dipole has low radar cross-section, and therefore low power reflection.
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Dipole w/ rotated tuning arms
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Temperature dependence

* Elastic modulus, density, and « Experimentally measured peak
]Eemperature and affect natural changing temperature.
requency.
. _ y o _ « Data shows 0.3 Hz/ C
beam predicts 0.2 Hz/ C
Predicted resonant frequency vs temperature Experimental results
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Characterization of RF Environment
Overview

Goal: find regions of RF spectrum where attenuation is lowest

Test Chamber

RF Cable
(16 feet)

AMP
(30 dB)

RF Cable
(32 feet)

Port #2

HP 8510C

Vector Network Analyzer
with Operator



Characterization of RF Environment
Site Survey

« Babcock & Wilcox Small Boiler TestChamper S

Simulator (SBS), Alliance Ohio
e Tim Fuller and Tom Flynn —

B&W Power Generation Group
* B&W IRAD supports cost share

Burner

\V‘**f"i”"

mf‘*

Aspirated Viewport




Characterization of RF Environment
Antenna installation

e antennas need to be broad
band (2.5 — 40 GHz)

* must fit inside standard 3”
viewport

* needs to withstand high
temperatures

L WY
Viewport installations




Characterization of RF Environment
Antenna installation

Feed Region

Semi-Rigid
Coaxial Cable
with Teflon Material

SMA Connector
(3.5mm)

Terminals of
thermo-couples
(Front & Back)

Small Air Holes




Characterization of RF Environment
Antenna design

* Viewport installation does not affect gain performance significantly

3.520" TEM Horn
(8.941 cm) '\h
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Characterization of RF Environment
Field Tests

o 2 field tests

* Natural gas and biomass firing

* SBS convection pass

 Evaluated RF attenuation from
2.5—-40 GHz




Characterization of RF Environment
Experimental results - biomass
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vnaracteriZation or n\r

Environment
Experi
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Conclusion: 10 GHz to 15 GHz should be a
good window for operation of sensor.



Conclusions

* Testing at B&W SBS indicates RF link budget is satisfactory (natural gas,
biomass, and coal firing)

* High temp RF materials characterization —strong response demonstrated
(not important to new MMA design)

« Metamaterial sensor concept was not demonstrated — indicates strong
need for a sensor signal which is distinct from broadcast energy

* Novel hybrid sensor concept developed — mechanically modulated
antenna (MMA) with acoustic excitation

« MMA shows good signal discrimination against background- unique time
based signhature

 Remote excitation and interrogation experiments successful

 Demonstrated temperature dependent shift in modulation frequency

« MMA sensor shows broad field of view (+/- 70°)

* Modeled modulation mechanism and showed strong phase response



Next Steps

* Optimize antenna design: maximize change in impedance due to a unit
displacement

 Investigate retroreflecting antenna array

« Optimize acoustic capture efficiency; enables lower acoustic power or
larger beam deflections

» Evaluate dielectric antenna concept (smaller form factor, sapphire as
antenna and package, not influenced by mounting specifics)

* Investigate sensor multiplexing (acoustic and RF multiplex)

* Develop Doppler interrogator (possibly COTS components)

» Develop high-temperature packaging

 Field test ofMMA sensors in coal combustion and/or gasifier facilities

Mechanically —
Modulated

Dielectric
.. Antennas




Contact Information

Russell May

Prime Photonics, LC

1116 South Main St, Ste 200
Blacksburg, VA 24060

(540) 961-2200 x450
rmay@primephotonics.com
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