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The Problem 

To measure physical parameters (temperature, pressure, strain, etc.) in extreme 
temperature and highly corrosive environments. 

Coal-Fired Boiler Plant  Coal-Gasification Plant 



The Proposed Solution 
Passive Wireless Sensors 



The Initial Approach 
Guided Mode Resonance Filters (GMRFs) 



Initial Approach 
Transduction concept 

• Periodic arrays on the order of the RF 
wavelength generate a signature 

• RF material properties change with 
temperature 

•  Signature changes can be calibrated to 
temperature 

• Sensors can be designed to have 
distinct signatures enabling multiplex 



Materials Characterization 
Overview 

Goal: Quantify temperature dependent RF material properties 

• permittivity (ε) and permeability (µ) 
• measure transmission and reflection thru 
samples to back out the conductivity 
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• εr is the relative permittivity 
• µr is the relative permeability 
•            and            are electric and 
magnetic loss tangents respectively 
•      is dielectric conductivity, and ω  
is angular frequency  
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Materials Characterization 
Experimental results - SiC 
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Dielectric Constant (εr′) Loss (εr′′) 

• Dielectric constant and Loss computed from raw data (S11, S21) 
• loss increases significantly with temperature 



Materials Characterization 
Experimental results 

Conductivity vs temperature for SiC at 22 GHz 
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Sensor Design 
GMR sensor concept 

Guided Mode Resonance (GMR) 
• incident energy at a specific frequency  is 
couple into a transverse longitudinal mode, 
creating a notch in the reflected response 

• simple construction 
• sensitive to angle of incidence 

Guided mode sensor 
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Sensor Design 
Alternative sensor concepts 

Element Resonance (SRR, dipole array etc.) 
• less angle sensitive 
• more complex geometry 

Dipole array Split ring resonator 
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Sensor Design 
Sensor testing 

• room temperature evaluation 
• baseline measurements 
• validation of test setup 



Sensor Design 
Sensor testing 
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Lab Env.
Sensor - Lab Env.
Metal Plate - Lab Env.
SiC Plate - Lab Env.
FR4 Plate - Lab Env.
Dipole Array - Lab Env.

•  measurement of reflected 
energy vs frequency 

• 16 – 24 GHz 
• baseline data for “no target” 
• dipole array shows good 
comparison to simulation 

• GMR sensor has not shown 
simulated response 

• edge diffraction effects 
possibly dominating 
response 

• high loss of SiC results in 
weak coupling 



Sensor Design 
Sensor testing 

• Measurement of reflected energy  
vs frequency 

• 16 – 24 GHz 
• baseline data for “no target” 
• Metamaterial sensor response 

compared to a metal plate 
• Sensor response is not discernable, 

even at normal incidence 
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Lab Env.
Sensor - Lab Env.
Metal Plate - Lab Env.

16 17 18 19 20 21 22 23 24
-90

-80

-70

-60

-50

-40

-30

Frequency (GHz)

|s
21

| (
dB

)

Distance: 0.45 [m], 4" x 4" Size Targets

 

 

Lab Env.
Sensor - Lab Env.
Metal Plate - Lab Env.

2” x 2”  4” x 4”  



Sensor Design 
Challenges with GMR (Metamaterial) Approach  

 1) The sensor response was weak and 
indistinguishable from background clutter.  
• Surface reflections swamped the GMR 

response 
• Material dielectric loss may prevent good 

coupling of the guided mode 

 2) A working metamaterial sensor would have 
to be very large to have a sufficient number 
of periods  
• Even a 4” x 4” sensor (approx 20 periods) 

had a response dominated by surface 
reflections and edge effects 

 3) The sensor was angle sensitive.  
• The sensor response changed or 

disappeared with any deviation from exact 
normal (90 degree) angle of incidence 

Need a unique signature to 
discriminate sensor signal from 
background reflections (frequency 
shifting, harmonics,etc.) 

Need a device that does not rely 
upon periodic structures of integral 
wavelength (single element devices) 

Need a device that does not 
rely upon normal incidence of 
interrogating radio wave. 



A New Wireless Sensor Design 
Mechanically Modulated Antenna 

• Each sensor is an antenna with a 
mechanical element which is interrogated 
wirelessly by Doppler radar. 

• The mechanical element modulates the 
frequency response of the antenna. 

• The modulation frequency changes 
with temperature of the antenna. 

• Modulation shifts the reflected 
frequency away from the center 
frequency of the Doppler radar. 

• Each antenna can be tuned to a 
unique frequency to multiplex 
several sensors with a single 
interrogator (radar) 

• Each sensor has a unique 
signature outside spectral range 
of background reflections 

 

 
 



Initial Sensor Geometry 

17 



Slot Antenna Close-Up 
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FEA predicts beam natural frequency of 1980 Hz. 



Interrogator Design 
Doppler RADAR 

• Acoustic excitation (1800 Hz) 
• Doppler RF interrogation (10 GHz) 



FEKO Simulation Results 

Beam displacement changes antenna impedance 
and modulates antenna center frequency. 
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Experimental Results 
Mechanically Modulated Antenna 

Initial experiments used laser excitation 
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Snapshot
With 512 averaging factor
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With 512 averaging factor

Normal incidence 70° incidence 



MMA Experimental Results 
Acoustic Excitation 

• RF Doppler placed 30 cm from 
target with 15 dBm power (30 mW) 

• Acoustic source 1 m from target 
with 110 dBA at 1800 Hz 

• Better acoustic capture efficiency 
when mounted on cardboard 

Sensor in free space Sensor on cardboard wall 
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Snap shot
With 512 averaging factor
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Dipole Antenna Design 

23 

Height 1.12 cm 
Stub tuner: 0.47 cm long 
Resonates electrically 
around 16 GHz 

Objective:  determine if amplitude 
or phase modulation dominates. 



Dipole antenna 

• Assumes interrogator uses horn antenna with 15 dBi gain and 2W output. 
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• Dipole has low radar cross-section, and therefore low power reflection. 



Dipole w/ rotated tuning arms 



Temperature dependence 

• Elastic modulus, density, and 
dimensions all depend on 
temperature and affect natural 
frequency. 

• Modeling vibrating cantilever 
beam predicts 0.2 Hz/ C 
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Temperature ( C) 

• Experimentally measured peak 
resonant frequency with 
changing temperature. 

• Data shows 0.3 Hz/ C 
temperature dependence. 

Experimental results 



Characterization of  RF Environment 
Overview 

Turbine Tip 
Clearance 

Probe 

Goal: find regions of RF spectrum where attenuation is lowest 



Characterization of  RF Environment 
Site Survey 

Turbine Tip 
Clearance 

Probe 

• Babcock & Wilcox Small Boiler 
Simulator (SBS), Alliance Ohio 

• Tim Fuller and Tom Flynn – 
B&W Power Generation Group 

• B&W IRAD supports cost share 



Characterization of  RF Environment 
Antenna installation 

• antennas need to be broad   
band (2.5 – 40 GHz) 

• must fit inside standard 3” 
viewport  

• needs to withstand high 
temperatures  

TEM horn antenna 

Viewport installations 



Characterization of  RF Environment 
Antenna installation 



Characterization of  RF Environment 
Antenna design 

• Viewport installation does not affect gain performance significantly 
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Characterization of  RF Environment 
Field Tests 

• 2 field tests 
• Natural gas and biomass firing 
• SBS convection pass 
• Evaluated RF attenuation from 
2.5 – 40 GHz 



Characterization of  RF Environment 
Experimental results - biomass 

Plots show difference in 
scattering parameter 
measurements made before 
and after biomass firing. 
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Before Firing
After Firing
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Characterization of  RF 
Environment 
Experimental results – coal firing 

Conclusion: 10 GHz to 15 GHz should be a 
good window for operation of sensor. 

Magnitude 

Phase 



Conclusions 

•Testing at B&W SBS indicates RF link budget is satisfactory (natural gas, 
biomass, and coal firing) 

• High temp RF materials characterization –strong response demonstrated 
(not important to new MMA design)  

•  Metamaterial sensor concept was not demonstrated – indicates strong 
need for a sensor signal which is distinct from broadcast energy 

•Novel hybrid sensor concept developed – mechanically modulated 
antenna (MMA) with acoustic excitation 

• MMA shows good signal discrimination against background- unique time  
based signature 

•  Remote excitation and interrogation experiments successful 
•  Demonstrated temperature dependent shift in modulation frequency 
•  MMA sensor shows broad field of view (+/- 70°) 
•  Modeled modulation mechanism and showed strong phase response 



Next Steps 

•  Optimize antenna design: maximize change in impedance due to a unit 
displacement 

•  Investigate retroreflecting antenna array 
• Optimize acoustic capture efficiency; enables lower acoustic power or 

larger beam deflections 
• Evaluate dielectric antenna concept (smaller form factor, sapphire as 

antenna and package, not influenced by mounting specifics) 
• Investigate sensor multiplexing (acoustic and RF multiplex) 
• Develop Doppler interrogator (possibly COTS components) 
• Develop high-temperature packaging 
• Field test ofMMA sensors in coal combustion and/or gasifier facilities 

1 cm 

Mechanically 
Modulated 
Dielectric  
Antennas 



Contact Information 

Russell May 
Prime Photonics, LC 
1116 South Main St, Ste 200 
Blacksburg, VA 24060 
 
(540) 961-2200 x450 
rmay@primephotonics.com 
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