

Ultra-High Temperature Distributed Sensors

John Coggin
Prime Photonics
Principal Investigator

Russ May
Prime Photonics
Program Manager

Tom Flynn
Babcock & Wilcox
Domain Expertise

Dr. William DavisVirginia Tech
Antenna Design & RF Testing

Agenda

- Problem
- Metamaterial Solution
 - Design
 - Materials characterization
 - Prototype Testing
- Mechanically Modulated Antenna Solution
 - System Design
 - Prototype Testing
 - Antenna Design
 - Temperature Tests
- Characterization of RF Environment
- Next Steps

The Problem

To measure physical parameters (temperature, pressure, strain, etc.) in extreme temperature and highly corrosive environments.

Coal-Fired Boiler Plant

Coal-Gasification Plant

The Proposed Solution

Passive Wireless Sensors

The Initial Approach Guided Mode Resonance Filters (GMRFs)

Initial Approach Transduction concept

- Periodic arrays on the order of the RF wavelength generate a signature
- RF material properties change with temperature
- Signature changes can be calibrated to temperature
- Sensors can be designed to have distinct signatures enabling multiplex

Materials Characterization Overview

Goal: Quantify temperature dependent RF material properties

- permittivity (ε) and permeability (μ)
- measure transmission and reflection thru samples to back out the conductivity

$$\mu = \mu_0(\mu_r' - j\mu_r'') = \mu_0 \mu_r' (1 - j \tan \delta_\mu)$$

$$\varepsilon = \varepsilon_0 \varepsilon_r' - j \frac{\sigma_e}{\omega}$$

- ε_r is the relative permittivity
- μ_r is the relative permeability
- $\tan \delta_{\varepsilon}$ and $\tan \delta_{\mu}$ are electric and magnetic loss tangents respectively
- σ_e is dielectric conductivity, and ω is angular frequency

Materials Characterization Experimental results - SiC

- Dielectric constant and Loss computed from raw data (S₁₁, S₂₁)
- loss increases significantly with temperature

Dielectric Constant (ε_r')

Loss ($\varepsilon_r^{\prime\prime}$)

Materials Characterization Experimental results

Conductivity vs temperature for SiC at 22 GHz

Sensor Design GMR sensor concept

Guided Mode Resonance (GMR)

- incident energy at a specific frequency is couple into a transverse longitudinal mode, creating a notch in the reflected response
- simple construction
- sensitive to angle of incidence

Guided mode sensor

Sensor Design Alternative sensor concepts

Element Resonance (SRR, dipole array etc.)

- less angle sensitive
- more complex geometry

Dipole array

Split ring resonator

Sensor Design Sensor testing

príme

- room temperature evaluation
- baseline measurements
- validation of test setup

Horn Antennas

Sensor Design Sensor testing

- measurement of reflected energy vs frequency
- 16 24 GHz
- baseline data for "no target"
- dipole array shows good comparison to simulation

- GMR sensor has not shown simulated response
- edge diffraction effects possibly dominating response
- high loss of SiC results in weak coupling

Sensor Design Sensor testing

- Measurement of reflected energy vs frequency
- 16 24 GHz
- baseline data for "no target"
- Metamaterial sensor response compared to a metal plate
- Sensor response is not discernable, even at normal incidence

Sensor Design Challenges with GMR (Metamaterial) Approach

- 1) The sensor response was weak and indistinguishable from background clutter.
 - Surface reflections swamped the GMR response
 - Material dielectric loss may prevent good coupling of the guided mode
- ⇒Need a unique signature to discriminate sensor signal from background reflections (frequency shifting, harmonics,etc.)
- 2) A working metamaterial sensor would have to be very large to have a sufficient number of periods
 - Even a 4" x 4" sensor (approx 20 periods) had a response dominated by surface reflections and edge effects
- ⇒Need a device that does not rely upon periodic structures of integral wavelength (single element devices)

- 3) The sensor was angle sensitive.
 - The sensor response changed or disappeared with any deviation from exact normal (90 degree) angle of incidence
- ⇒Need a device that does not rely upon normal incidence of interrogating radio wave.

A New Wireless Sensor Design Mechanically Modulated Antenna

- Each sensor is an antenna with a mechanical element which is interrogated wirelessly by Doppler radar.
- The mechanical element modulates the frequency response of the antenna.
 - The modulation frequency changes with temperature of the antenna.

- Each antenna can be tuned to a unique frequency to multiplex several sensors with a single interrogator (radar)
- Each sensor has a unique signature outside spectral range of background reflections

Initial Sensor Geometry

Slot Antenna Close-Up

Semi-rigid Coaxial Cable

FEA predicts beam natural frequency of 1980 Hz.

Vibration Beam

Interrogator Design Doppler RADAR

- Acoustic excitation (1800 Hz)
- Doppler RF interrogation (10 GHz)

FEKO Simulation Results

Beam displacement changes antenna impedance and modulates antenna center frequency.

- 558 µm

Experimental Results *Mechanically Modulated Antenna*

Normal incidence

70° incidence

Initial experiments used laser excitation

MMA Experimental Results Acoustic Excitation

- RF Doppler placed 30 cm from target with 15 dBm power (30 mW)
- Acoustic source 1 m from target with 110 dBA at 1800 Hz
- Better acoustic capture efficiency when mounted on cardboard

Sensor in free space

Remote Acoustic Source

Sensor on cardboard wall

Dipole Antenna Design

Objective: determine if amplitude or phase modulation dominates.

Height 1.12 cm Stub tuner: 0.47 cm long Resonates electrically around 16 GHz

Dipole antenna

- Assumes interrogator uses horn antenna with 15 dBi gain and 2W output.
- Dipole has low radar cross-section, and therefore low power reflection.

Dipole w/ rotated tuning arms

Temperature dependence

- Elastic modulus, density, and dimensions all depend on temperature and affect natural frequency.
- Modeling vibrating cantilever beam predicts 0.2 Hz/ C
 - Predicted resonant frequency vs temperature 1695 1690 requency (Hz) 1685 f = 0.2 T + 16931675 1670 10 20 30 50 60 70 80 90 100 Temperature (° C)

- Experimentally measured peak resonant frequency with changing temperature.
- Data shows 0.3 Hz/ C temperature dependence.

Characterization of RF Environment *Overview*

Goal: find regions of RF spectrum where attenuation is lowest

Characterization of RF Environment Site Survey

príme

- Babcock & Wilcox Small Boiler Simulator (SBS), Alliance Ohio
- Tim Fuller and Tom Flynn –
 B&W Power Generation Group
- B&W IRAD supports cost share

Characterization of RF Environment *Antenna installation*

príme

- antennas need to be broad band (2.5 – 40 GHz)
- must fit inside standard 3" viewport
- needs to withstand high temperatures

TEM horn antenna

Characterization of RF Environment *Antenna installation*

SMA Connector (3.5mm)

Feed Region

Semi-Rigid Coaxial Cable with Teflon Material

Terminals of thermo-couples (Front & Back)

Small Air Holes

Characterization of RF Environment *Antenna design*

Viewport installation does not affect gain performance significantly

Characterization of RF Environment *Field Tests*

- 2 field tests
- Natural gas and biomass firing
- SBS convection pass
- Evaluated RF attenuation from 2.5 – 40 GHz

Characterization of RF Environment

Experimental results - biomass

Plots show difference in scattering parameter measurements made before and after biomass firing.

Environment

Experimental results - coal firing

Conclusion: 10 GHz to 15 GHz should be a good window for operation of sensor.

Conclusions

- Testing at B&W SBS indicates RF link budget is satisfactory (natural gas, biomass, and coal firing)
- High temp RF materials characterization –strong response demonstrated (not important to new MMA design)
- Metamaterial sensor concept was not demonstrated indicates strong need for a sensor signal which is distinct from broadcast energy
- Novel hybrid sensor concept developed mechanically modulated antenna (MMA) with acoustic excitation
- MMA shows good signal discrimination against background- unique time based signature
- Remote excitation and interrogation experiments successful
- Demonstrated temperature dependent shift in modulation frequency
- MMA sensor shows broad field of view (+/- 70°)
- Modeled modulation mechanism and showed strong phase response

Next Steps

- Optimize antenna design: maximize change in impedance due to a unit displacement
- Investigate retroreflecting antenna array
- Optimize acoustic capture efficiency; enables lower acoustic power or larger beam deflections
- Evaluate dielectric antenna concept (smaller form factor, sapphire as antenna and package, not influenced by mounting specifics)
- Investigate sensor multiplexing (acoustic and RF multiplex)
- Develop Doppler interrogator (possibly COTS components)
- Develop high-temperature packaging
- Field test ofMMA sensors in coal combustion and/or gasifier facilities

Mechanically Modulated Dielectric Antennas

Contact Information

Russell May Prime Photonics, LC 1116 South Main St, Ste 200 Blacksburg, VA 24060

(540) 961-2200 x450 rmay@primephotonics.com