# Modeling and Evaluation of Geophysical Methods for Monitoring and Tracking CO<sub>2</sub> Migration in the Subsurface

FOA Number: DE-FOA-0000032 NETL Award Number: DE-FE0002441

PI: Jeffrey Daniels

Co-PI: Robert Burns & Franklin Schwartz

Students: Michael Murphy & Kyle Shalek

The Ohio State University







National Energy Technology Laboratory
Carbon Storage R&D Project Review Meeting
Developing the Technologies and Building the
Infrastructure for CO<sub>2</sub> Storage
August 21-23, 2012







#### Presentation Outline

- Benefit to the Program
- Project Overview
- Technical Status
- Accomplishments to Date
- Summary



### Benefit to the Program

#### Program Goal:

Develop technologies to demonstrate that 99 percent of injected CO<sub>2</sub> remains in the injection zones

#### Project Benefits Statement:

Development of a software package to study and improve geophysical methods for monitoring injected CO<sub>2</sub>. The software integrates seismic, electromagnetic, and well log methods to aid in field survey design and define limitations that will advance the capability to prove that 99% of injected CO<sub>2</sub> remains in zone.



#### **Project Overview:**

#### Goals and Objectives

- Develop a 3D modeling, imaging, and interpretation software package for seismic, EM, and borehole methods.
  - Criteria: Compare software output to literature and field data.
- Collect data from a potential injection site and design heterogeneous injection models.
  - Criteria: Choose a site, collect data, and create data models.
- Produce numerical simulations of the test site that include various injection and monitoring scenarios.
  - Criteria: Output numerical models for imaging and interpretation.
- The Project Goals serve to advance monitoring techniques thus achieve the program goal of demonstrating that CO<sub>2</sub> remains in the injection zone.



# Software Development: GphyzCO2

Open-source software package that utilizes well log, laboratory, Electromagnetic, and Seismic data for analysis and forward modeling.





# Software Development: Electromagnetic Module





# Software Development: Seismic Module

# Interface: Model Building



Vp, Vs, Density

# Madagascar Forward Modeling



Elastic Anisotropy FDTD

# OpendTect Processing, Imaging, and Interpretation





# Software Development: Well Log Module



- Geological Characterization
- Borehole Manipulation



# Test Site: Warren Co., OH





### **Test Site Data**





#### **Test Site Data**





# Numerical Modeling



x (km)



### Accomplishments to Date

- Continuous development of GphyzCO2 software package
  - Completed the Top-Level program
  - Completed the EM modeling and interpretation Module
  - Successfully integrated seismic module with Madagascar and OpendTect.
  - Input and displayed well log data files
- Selected Warren Co. as test site.
  - Collected field and laboratory data.
  - Identified and analyzed injection zone for numerical simulations.



### Summary

- Achieve the program goal of demonstrating that CO<sub>2</sub> remains in the injection zone by advancing geophysical monitoring techniques.
- Develop a 3D modeling, imaging, and interpretation software package for seismic, EM, and borehole methods.
- Collect data from a potential injection site and design heterogeneous injection models.
- Produce numerical simulations of multiple injection and monitoring scenarios for the test site.
- Define monitoring methods limitations and design ideal surveys for any potential injection site.



## Appendix

- Organization Chart
- Gantt Chart
- Bibliography



### Organization Chart

- PI: Jeffrey Daniels
  - Responsible for managing the project and reporting.
- Co-PI: Franklin Schwartz and Robert Burns
  - Advise the project team, help to provide review and guidance to students and contribute to publications.
- Student: Kyle Shalek and Michael Murphy
  - Directly involved in all phases of the research.



### **Gantt Chart**

| Task                                                                                         | ١ | Year 1 |  |  | Year 2 |  | 2 | Year 3 |  | Completion |
|----------------------------------------------------------------------------------------------|---|--------|--|--|--------|--|---|--------|--|------------|
| 1.0 Project Management Plan and Reporting:                                                   |   |        |  |  |        |  |   |        |  | 90%        |
| 2.0 Develop Top (System) Level Program:                                                      |   |        |  |  |        |  |   |        |  | 100%       |
| 3.0 Develop a Wireline Interpretation Module:                                                |   |        |  |  |        |  |   |        |  | 75%        |
| 4.0 Develop Geologic Characterization Module:                                                |   |        |  |  |        |  |   |        |  | 75%        |
| 5.0 Develop Seismic Data Interpretation Module :                                             |   |        |  |  |        |  |   |        |  | 100%       |
| 6.0 Develop Electromagnetic Data Interpretation Module to integrate with the seismic module: |   |        |  |  |        |  |   |        |  | 100%       |
| 7.0 Develop Wellbore Manipulation Module:                                                    |   |        |  |  |        |  |   |        |  | 90%        |
| 8.0 Develop Additional Modules:                                                              |   |        |  |  |        |  |   |        |  | 75%        |
| 9.0 Application of Program to Site Model:                                                    |   |        |  |  |        |  |   |        |  | 75%        |



### Bibliography

Shalek, Kyle; "Electrical Property Investigation of Potential Carbon Sequestration Formations". Oral Presentation at AAPG ACE Long Beach, CA, 2012. Abstract 1236840.

Murphy, Michael; "Pore Distribution in the Ordovician Shale of the Utica/Point Pleasant Sub-Basin". Poster Presentation at AAPG ACE Long Beach, CA, 2012. Abstract 1241020.