Sequestration of CO₂ in Basalt Formations

Project Number 58159 Task 1

H. Todd Schaef
B. Peter McGrail
Pacific Northwest National Laboratory

Collaborators

Zhengrong Wang, Yale

Kevin Johnson, University of Hawaii

U.S. Department of Energy

National Energy Technology Laboratory
Carbon Storage R&D Project Review Meeting
Developing the Technologies and Building the
Infrastructure for CO₂ Storage

August 21-23, 2012

Presentation Outline

- Program Focus Area and DOE Connections
- Goals and Objectives
- Scope of Work
- Technical Discussion
- Accomplishments to Date
- Project Wrap-up
- Appendix (Organization Chart, Gantt Chart, and Bibliography

Benefit to the Program

- Program goals addressed:
 - Technology development to predict CO₂ storage capacity
 - Demonstrate fate of injected CO₂ and most common contaminants
- Project benefits statement: This research project conducts modeling, laboratory studies, and pilot-scale research aimed at developing new technologies and new systems for utilization of basalt formations for long term subsurface storage of CO₂. Findings from this project will advance industries ability to predict CO₂ storage capacity in geologic formations.

Project Overview:

Goals and Objectives

- Goal: Provide a path forward for commercial use of deep basalt formations for CO₂ sequestration
- Objective: Address key challenges associated with utilization of basalt formations as CO₂ storage units
 - Conduct laboratory research that addresses commercialscale injection strategies
 - Provide laboratory measurements for predicting CO₂ fate and transport
 - Improved seismic imaging methods for basalt characterization

Project Overview: Scope of work

- Carbonate Mineralization of Basalts in Aqueous-Dominated Fluids
 - Carbonation rates and key variables important to evaluating long term storage of CO₂
 - High pressure scCO₂ batch experiments
 - Diverse set of basalt samples
 - Aqueous dominated reactions, long-term testing
 - Dominates the total carbonation rate in shallower reservoirs

Columbia River Basalt with circular calcite coatings after exposure to wet scCO₂ for 100 days

- ➤ Basalt Reactions with Wet scCO₂
 - Dominant phase in contact with reservoir rock
 - Long-term experiments reveal rapid carbonation but system is treated as inert in all present reservoir simulators
 - Dominates the total carbonation rate in deeper reservoirs

Project Overview: Scope of work

Multicomponent Gas Systems

- Database to evaluate impact of injecting impure gas streams into basalts (such as in CarbFix project)
- Testing shows carbonate accelerating with some basalts, interference in others
- Current testing matrix includes
 SO₂-O₂-CO₂ mixtures

Hawaiian basalt after 84 days exposure to water and scCO₂ containing 1% SO₂

Seismic Imaging

- Assess potential for surface seismic monitoring of CO₂ plume
- Utilize Wallula pilot borehole under BSCSP
- Evaluate advanced signal processing algorithms for noise reduction and detection of CO₂ plume

Flood Basalt Features Relevant to CO₂ Sequestration

- Formation process
 - Giant volcanic eruptions
 - · Low viscosity lava
 - Large plateaus
 - Multiple layers
- Primary structures
 - Thick impermeable seals
 - Caprock (flow interior)
 - Regional extensive interbeds
 - Permeable vesicular and brecciated interflow zones
 - Injection targets
 - 15-20% of average flow

Deccan Trap Basalts

Layered Basalt Flow

Carbonation of Basalts with Aqueous Dissolved scCO₂

> Static Experiments

- Carbonate precipitates
 - Discrete particles
 - Chemical Variability
- Calcite, cation substituted
- Increased reservoir depths increase carbonation
 - Transition from calcite to ankerite/kutnahorite
 - Cation substituted (Fe, Mn, & Mg
 180 days, 137°C, 250 bar

2.5 years, 100°C, 100 bar

Carbonate Chemistries

Phase Behavior of CO₂-H₂O Mixtures in Geological Sequestration

CO₂-H₂O Mixtures

- CO₂ solubility in water varies little with pressure and temperature
- H₂O solubility in scCO₂ is strongly dependent on depth
- An equivalent geochemical framework for chemical reactivity in wet scCO₂ does not yet exist

Mineral transformation kinetics is potentially as great or greater in wet scCO₂

Reaction Products when Exposing Basalt to Wet scCO₂

Wet scCO₂ and Mineral Surface Interactions

What do we know?

- Thin water films develop on silicate minerals
- Water is key to carbonation of silicates

> Spectroscopy Studies

- In situ measurements at reservoir conditions
 - 50°C, 90 bar, water saturated scCO₂
- Observed water film growth, carbonate formation, and mineral dissolution

> Water film properties

- Enstatite least reactive
- Olivine most reactive
- Columbia River basalt develop thickest water films but intermediate reactivity
- New insights to water mediated reactions

Initial Stages of Carbonation in wet scCO₂

- Goal: Determine role of water in wollastonite carbonation process.
- Experimental Conditions: Range of Temperatures (50, 55, 70 C) and pressure (90, 120, 180 bar), with dry to variable wet scCO₂.
- Results: Minimum amount of water required before carbonation proceeds.

Quantitative in situ XRD Results

50°C, 90 bar, 35% H₂O, 24 hours

Silicate Carbonation in Wet scCO₂

- Reactions occurring between silicates and H₂O-scCO₂ fluids produce well crystallized carbonate minerals at laboratory time scales.
- Carbonation rates are initially fast, but attenuated in low water environments
- Water condensation on surface is key to carbonation of silicates
- Amorphous layers are the initial steps to carbonation
- Degrees of carbonation are dependent on reservoir depth

Schaef, H.T., McGrail, B.P., Loring, J.S., Bowden, M.E., Arey, B.W., and Rosso, K.M., 2012, "Forsterite [Mg₂SiO₄)] carbonation in wet supercritical CO₂: An *in situ* high pressure x-ray diffraction study, ES&T, DOI: 10.1021/es301126f.

Impacts of Contaminants on Mineral Carbonation

Pre- and Oxy-combustion gas streams

- SO₂, H₂S, O₂, NOx
- Corrosive when mixed with H₂O and CO₂

> Experimental Conditions

- Crushed basalt (0.42-2.0 mm)
- Aqueous dominated, 90°C, 90 bar
- CO₂ with ~ 1 wt% H₂S or SO₂

> SO₂-CO₂ Testing

- Extensive dissolution
- Secondary reaction products
 - Hexahydrite (MgSO₄·6H₂O)
 - Fe sulfite (FeSO₃·2H₂O)
 - Mg sulfite (MgSO₃·2H₂O)
 - Mg thiosulfate hydrate (MgS₂O₃·6H₂O)

> H₂S-CO₂ system

- Pyrite and marcasite coatings (84 days)
- Pyrite and carbonates (3.5 years)

Connecting Laboratory Results and Batch Modeling to Reservoir Simulators

- Geochemical reaction path modeling with EQ3/6
 - Accurately predicts pyrite precipitation followed by carbonates
 - Rapid consumption of H₂S
 - Correlatable to basalt chemistry
- These results feed into reservoir simulations

Accomplishments

- Long term storage of CO₂ in basalt formations
 - Aqueous dominated reactions
 - Experiments show carbonate mineralization is relatively fast
 - Variable rates among basalts not correlated to bulk composition or mineralogical differences. New evidence pointing to key role of Fe(II)/Fe(III) redox chemistry
 - Water bearing supercritical CO₂ reactions
 - o Carbonation significant and comparable to aqueous dominated system
 - Mineralization rates increase with reservoir depth
 - o In situ techniques illustrate important role of water
 - Mixed gas systems (SO₂, H₂S)
 - Different reaction rates compared to pure CO₂
 - Precipitation of sulfur containing minerals
- Published laboratory results have significantly benefited and been directly used in pilot sequestration projects
 - Boise Wallula ICCS Project (Eastern Washington)
 - CarbFix Project (Hellisheidi, Iceland)
- Results also being applied for independent energy storage study in CRB

Summary

Key Findings

- Reactions occurring between basaltic rocks and H₂O-scCO₂ fluids produce well crystallized carbonate minerals at laboratory time scales.
- Reactions occurring in water bearing scCO₂ fluids are equally important.
- Sulfur species effectively and permanently removed from the scCO₂ phase.

Long Term Implications

 This research is providing a path forward for eventual commercial use of basalt formations for CO₂ sequestration.

"CO₂ storage in basalt formations is also a potentially important option for regions like the Indian subcontinent" IEG Technology Roadmap, 2009.

Needles of aragonite growing on a basalt grain during exposure to wet scCO₂ for 377 days at 100°C and 90 bar.

FY 13 Activity Summary

- Continue long term CO₂-H₂O basalt experiments
- Expand CO₂ based mixed gas studies to include variable mixtures of O₂, SO₂, & NO_x
- Initiate new laboratory measurements with in situ techniques

Organization Chart

- Project team has participants that cut across the Energy & Environment and Fundamental Sciences Directorates at PNNL
- Pacific Northwest National Laboratory is Operated by Battelle Memorial Institute for the Department of Energy

Gantt Chart

Bibliography

- McGrail, B. P., H. T. Schaef, et al. (2006). "Potential for carbon dioxide sequestration in flood basalts." <u>Journal of Geophysical Research-Solid Earth</u> 111(B12201): ARTN B12201.
- Schaef, H. T. and B. P. McGrail (2009). "Dissolution of Columbia River Basalt under mildly acidic conditions as a function of temperature: Experimental results relevant to the geological sequestration of carbon dioxide." <u>Applied Geochemistry</u> **24**(5): 980-987.
- McGrail, B., H. Schaef, V. Glezakou, L. Dang, P. Martin, and A. Owen. 2009. "Water Reactivity in the Liquid and Supercritical CO₂ Phase: Has Half the Story Been Neglected?" In Proceedings of *GHGT-9*, Energy Procedia.(9):3691-3696
- Schaef, H. T., B. P. McGrail, et al. (2010). "Carbonate mineralization of volcanic province basalts." <u>International Journal of Greenhouse Gas Control</u> **4**(2): 249-261.
- Schaef, H. T., B. P. McGrail, et al. (2011). Basalt reactivity variability with reservoir depth in supercritical CO₂ and aqueous phases. <u>GHGT10</u>. Amsterdam, Netherlands, Energy Procedia: 4977-4984.
- Schaef, H. T., B. P. McGrail, et al. (2012). "Forsterite [Mg₂SiO₄)] Carbonation in Wet Supercritical CO₂: An *in situ* High Pressure X-Ray Diffraction Study." <u>Environmental Science & Technology, (DOI:</u> 10.1021/es301126f).
- Miller, Q., Thompson, C., et al. (2012). "Insights into silicate carbonation in water bearing supercritical CO₂", IJGGC, submitted.

20