

CO₂ Sequestration in Unmineable Coal with Enhanced Coal Bed Methane Recovery DE-FC26-01NT41148

James E. Locke & Richard A. Winschel CONSOL Energy Inc.

U.S. Department of Energy
National Energy Technology Laboratory
Carbon Storage R&D Project Review Meeting
Developing the Technologies and Building the
Infrastructure for CO₂ Storage

Presentation Outline

Benefit to the program

Project overview

Technical status

Accomplishments

Summary

Appendix

Benefit to the Program

This project will demonstrate the effectiveness and the economics of carbon sequestration in an unmineable coal seam with enhanced coal bed methane (ECBM) production.

Project Overview: Goals and Objectives

Demonstrate horizontal drilling in underground coal seams,

Define effective CO₂ injection methods and procedures,

Evaluate the CO₂ adsorption capacity of in-situ coal,

Devise economical drilling strategies to maximize both CO₂ sequestration potential and CBM recovery,

Measure the impact of CO₂ injection on CBM recovery,

Monitor the CO_2 concentrations in the water and gas phases to determine the stability of sequestered CO_2 over an extended period of time, and

Assess the overall economics of CO_2 sequestration (\$/ton), including the co-benefit of methane production in coal seams.

Project Overview:

Tasks

20,000 short ton injection goal

- Examine effective methodology for injecting CO₂ gas into an unmineable coal seam
- Evaluate the CO₂ adsorption capacity of in-situ coal
- Determine the impact of CO₂ injection on ECBM

Environmental Monitoring

- Deep well gas & produced water
- USDW zone monitoring well gas & water
- Residential drinking well water
- Stream water
- Soil gas, surface gas, & tracer gas monitoring

Geophysical Work

- Seismic surveys
- Cleat & fracture model development
- Reservoir modeling
- Tilt meter monitoring

Technical Status: Background

Project Location

- Marshall County, West Virginia, USA
- Regional stratigraphy:
 - Clastic sedimentary
 - Limestone
 - Coal

Target Formation

- Upper Freeport coal seam (1,200-1,800)deep)
 - Thicker to the north & west
 - Tapering to pods to the south and east
- Pittsburgh coal seam overlying ~600 ft.

Technical Status: Timeline

Technical Status: Site Layout

Daily Cumulative Tons of CO₂ Injected

Original injection pump

- Cryomec 2-cylinder
- Removed from service Nov. 1, 2011

Replacement pump system

- Cat Pump triplex model
- Vapor lock troubleshooting

Environmental Monitoring

Gas

- Project CBM production wells (MH-3, MH-4, MH-5, MH-11, & MH-12)
- AOR CBM production well (MC-5)
- AOR monitoring wells
 - Upper Freeport observation wells (MH-26 & MH-27)
 - Three deep-well annuli
 - Three aquifer-zone wells (WVU-1, 2, & 3)

Water

- CBM production wells (MH-11 & MH-12)
- AOR CBM production well (MC-5)
- AOR USDW zone monitoring wells (WVU-1, 2, & 3)
- Stream samples
- Residential water wells

Pittsburgh Seam Production Well CO₂ Concentrations

AOR Gas Monitoring Results:

AOR Gas Wells

% CO ₂	SD
0.31	0.04
0.41	0.11
0.37	
0.70	0.05
1.16	0.55
2.12	
0.79	0.05
0.70	0.25
0.30	
2.82	0.38
3.35	0.43
4.05	
	0.31 0.41 0.37 0.70 1.16 2.12 0.79 0.70 0.30

Aquifer-Zone Wells

Well No.	% CO ₂	SD
WVU#1		
Baseline Average	0.05	0.02
Post injection average	0.09	0.05
Most recent value	0.19	
WVU #2		
Baseline Average	0.06	0.03
Post injection average	0.08	0.04
Most recent value	0.17	
WVU #3		
Baseline Average	0.05	0.01
Post injection average	0.21	0.15
Most recent value	0.45	

Upper Freeport Monitoring Wells

<u> </u>			
Well No.	% CO ₂	SD	
MH-26			
Baseline Average	0.20	0.27	
Post injection average	0.04	0.04	
Most recent value	0.05		
MH-27			
Baseline Average	0.53	0.72	
Post injection average	0.05	0.04	
Most recent value	0.10		

Technical Status: CBM Production

Technical Status: CBM Production

Accomplishments to Date

- $> 2,600 \text{ tons CO}_2 \text{ injected}$
- Injection studied at 700 psi & 933 psi
- > Improved injection system
- > 1,400 psi injection test to commence within 30 days
- > > 762 mmcf CBM produced
- Extensive environmental and geophysical monitoring program throughout
 - No conclusive signs of plume migration
 - Injection modeling
 - Cleat network model development
- Worked closely with academia
- > Provided a platform for Master's and Ph.D. research

Summary

Key findings

- Increased "at-rest" formation pressure over time
- Longer-than-expected injection duration (supported by modeling)
- Minor positive tilt meter deflections recorded along MH-18 laterals
- Cleat network model shows areas of concentrated seismic discontinuities with some spatial association to tilt meter readings.

Lessons learned

- Down-dip drilling not suitable
- Injection operations for vapor lock control

Future plans

- Conduct step-rate testing
- Increase injection pressure to permitted 1400 psig
- Continue injection through December 2013
- Two years of post-injection monitoring

Acknowledgements

Environmental monitoring, geophysical work, data review, soil and tracer gas sampling and analysis.

Funding provided in part by the U. S. Dept. of Energy under Cooperative Agreements No. DE-FC26-01NT41148 and No. DE-FC26-04NT42262

CO₂ Sequestration in Unmineable Coal with Enhanced Coal Bed Methane Recovery DE-FC26-01NT41148

James E. Locke & Richard A. Winschel CONSOL Energy Inc.

U.S. Department of Energy
National Energy Technology Laboratory
Carbon Storage R&D Project Review Meeting
Developing the Technologies and Building the
Infrastructure for CO₂ Storage

Questions?

Appendix

Organization Chart

Bibliography

Wilson, T.H.; Siriwardane, H.; Zhu, L.; Bajura, R. A.; Winschel, R. A; Locke, J. E.; and Bennett, J.; 2012, Fracture model of the Upper Freeport coal: Marshall County West Virginia pilot ECBMR and CO2 sequestration site, Int. J. Coal Geol., doi:10.1016/j.coal. 2012.05.005.

Wilson, T. H.; Tallman, J.; Rauch, H.; Wells, A.; Smith, D.; 2003, Reconnaissance Studies of a Pilot Carbon Sequestration Site in the Central Appalachians of West Virginia, Northeastern Geology & Environmental Sciences, v. 25, no. 4, p. 330-345.