

Microbial and Chemical Enhancement of In-Situ Carbon Mineralization in Geologic Formations DE-FE0002389

Ah-Hyung Alissa Park

Huangjing Zhao, Jürg Matter, Karthik Chandran Columbia University

U.S. Department of Energy

National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO₂ Storage

Presentation Outline

- Benefit and Overview
- > Results and Accomplishments
 - Characterization of Antigorite
 - Anaerobic Digestion
 - Chemically Enhanced Mineral Dissolution
 - Controlled Precipitation of MgCO₃
 - In-Situ Mineral Carbonation
- > Summary

Chemical and Biological Catalytic Enhancement of Weathering of Silicate Minerals as Novel Carbon Capture and Storage Technology

- No need for the solvent regeneration and CO₂ compression, straightforward MVA
- Alternative CO₂ utilization option with improved economic feasibility

Benefit of the Program

Identify the Program goals being addressed.

This technology contributes to the Carbon Storage Program's effort of ensuring 99% CO₂ storage permanence in the injection zones.

Project benefits

The research project is developing chemically enhanced insitu mineral carbonation system to increase the mineral trapping of injected CO_2 . The technology, when successfully demonstrated, will increase the stability of the CO_2 geological storage. This technology contributes to the Carbon Storage Program's effort of ensuring 99 percent CO_2 storage permanence in the injection zone(s).

Project Overview: Goals and Objectives

- This project aims to provide the knowledge basis for in-situ CO₂-mineral-brine interaction for geologic sequestration.
- A microbial system that produces weak acids will be developed in order to chemically enhance the in-situ mineral dissolution and, in turn, to achieve faster carbon mineralization kinetics.
- The proposed project will provide important research experience for both graduate and undergraduate students who will be faced with the challenge of implementing and deploying CCS technologies.

Overall Schematic

Characterization of Antigorite

Chemical Composition

Removal of Fines (< 5µm)

Mineral	Element/Oxide [wt%]					
Description	Raw Antigorite					
Al_2O_3	0.166					
CaO	0.217					
Cr ₂ O ₃	0.032					
FeO	3.664					
Fe ₂ O ₃	3.415					
MgO	43.342					
NiO	0.254					
K ₂ O	0.003					
SiO ₂	36.429					
Na ₂ O	0.005					
Volatiles C, CO ₂	0.810					
C, fixed	0.025					
Water	0.600					
Water, bonded	12.065					
Total	101.028					

Anaerobic Digestion

Chemically Enhanced Mineral Dissolution

Effect of Chelating Agents on Antigorite Dissolution

Anaerobic Digestion

Effect of Aging Time at 295K

Effect of Aging Time at 335K

Effect of Reaction Temperature

Effect of Chelating Agents

Model System vs. Real System

17

Biogasification of Organic Waste

Organic acids are produced as intermediate products.

♦ Maximum concentrations of organic acids during the process:

> Acetic acid: 0.15 M

Propionic acid: 0.025 M

Butyric acid: 0.05 M

Valeric acid: 0.002 M

Capeoic acid: 0.01 M

E.R. Vieitez, S. Ghosh. 1999, Biogasification of solid wastes by two-phase anae pobic fermentation, Bromass and Bioenergy, Vol. 16,700p. 299-309.

In-Situ Mineral Carbonation

- •Mixture is effective in enhancing antigorite carbonation compared to D.I. water
- Increasing temperature and a longer reaction time result in more carbonation

Accomplishments to Date

- Mineral characterization completed
- Thermodynamic modeling completed
- Fermentation of organic waste streams for volatile fatty-acid production completed
- Investigation of microbial ecology of acidogenic fermentation completed
- Design and fabrication of a high pressure reactor completed
- Kinetic and mechanistic studies of mineral dissolution and carbonation almost done
- Characterization of mineral carbonates almost done
- Environmental and economic assessments still going on

Summary

- Various organic chelating agents can be produced by the process of anaerobic digestion of organic waste.
- Organic chelating agents can enhance the reaction rate in the mineral dissolution step.
- Effect of organic chelating agents on precipitated magnesium carbonates formation is not significant.
- > By controlling the parameters of the crystallization system, the PMC can be synthesized with the crystal structures that are suitable for the filler materials.
- Low concentrated organic chelating agents enhanced the overall reaction rate in the one-step mineral carbonation slightly in short term.
- Kinetic and mechanistic studies of mineral dissolution and characterization of mineral carbonates will be continued.
- Environmental and economic assessments will be continued.

Organization Chart

Gantt Chart

Task/													
Subtask#	Tasks	Year I				Year II				Year III			
		Qt1	Qt2	Qt3	Qt4	Qt1	Qt2	Qt3	Qt4	Qt1	Qt2	Qt3	Qt4
1.0	Project Management, Planning, and Reporting												
1.1	Project Management Plan												
1.2	Reporting and Budgets												
1.3	Presentation and Briefings												
	Final Report Preparation												
2.0	Characterization of minerals and thermodynamic modeling												
	of CO ₂ -mineral-brine systems with potential organic acids												
	(Phase I)												
2.1	Mineral characterization												
2.2	Thermodynamic modeling												
3.0	Development of a microbial system for the production of												
	volatile fatty-acids from organic waste streams (Phase II)												
3.1	Fermentation of organic waste streams for volatile fatty-acid												
	production												
3.2	Investigation of microbial ecology of acidogenic fermentation												
4.0	Kinetic and mechanistic studies of chemical enhancement of												
	mineral dissolution and carbonation using organic acids												
	(Phase III)												
4.1	Design and fabrication of a high pressure reactor												
4.2	Kinetic and mechanistic studies of mineral dissolution and												
	carbonation												
4.3	Characterization of mineral carbonates												
5.0	Environmental and economic assessments (Phase IV)												

Bibliography

- > Journal papers
 - 1. Dissolution of serpentine using organic acids produced by microbial reactor (in preparation).
 - 2. In-situ mineralization using organic chelating agents from food waste treatment (in preparation).
- Presentation
 - 1. Greeshma Gadikota, Huangjing Zhao, Peter Kelemen and Ahhyung Alissa Park, 2011, Carbon mineralization via carbonation of Ca and Mg-bearing minerals as permanent storage of anthropogenic CO₂, 28th Annual International Pittsburgh Coal Conference, Pittsburgh, PA.