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Presentation Outline

> Benefit and Overview

» Results and Accomplishments
« Characterization of Antigorite
» Anaerobic Digestion
« Chemically Enhanced Mineral Dissolution
» Controlled Precipitation of MgCO,
* In-Situ Mineral Carbonation

» Summary
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Chemical and Biological Catalytic Enhancement of Weathering of
Silicate Minerals as Novel Carbon Capture and Storage Technology
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O No need for the solvent regeneration and CO, compression, straightforward MVA

O Alternative CO, utilization option with improved economic feasibility
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Benefit of the Program

* |dentify the Program goals being addressed.

This technology contributes to the Carbon Storage Program’s
effort of ensuring 99% CO:2 storage permanence in the
Injection zones.

* Project benefits

The research project is developing chemically enhanced in-
situ mineral carbonation system to increase the mineral
trapping of injected CO,. The technology, when successfully
demonstrated, will increase the stability of the CO, geological
storage. This technology contributes to the Carbon Storage
Program’s effort of ensuring 99 percent CO, storage
permanence in the injection zone(s).
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Project Overview: Goals and Objectives

= This project aims to provide the knowledge basis for in-situ
CO,-mineral-brine interaction for geologic sequestration.

= A microbial system that produces weak acids will be
developed in order to chemically enhance the in-situ mineral
dissolution and, in turn, to achieve faster carbon mineralization
Kinetics.

» The proposed project will provide important research
experience for both graduate and undergraduate students who
will be faced with the challenge of implementing and deploying
CCS technologies.
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Characterization of Antigorite

Chemical Composition Removal of Fines (< 5um)

Mineral Element/Oxide [wt%]

Description Raw Antigorite
AlLLO, 0.166 | TR smple  SufanAvea dveae
a0 0217 %6
o e | |
Fe,0, 3.415 S g [AAe
MgO 43.342 | | | Cleaned_Antigorite A 296 5
N | O O . 2 5 4 01 1 10 100 1000 Cleaned Antigorite B 305
K;0 0.003 — ]
Sio, 36.429 ;
Na,O 0.005 Al cicaning } A |

Volatiles C, CO, 0.810 N
C, fixed 0.025 ! J
Water 0.600 e E R R X N
Water, bonded 12.065

Total 101.028




"

Anaerobic Digestion
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Anaerobic Digestion of Glucose
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W. Gujer and A. J. B. Zehnder. 1983, Conversion process in anaerobic digestion, Water Science and Technology, Vol. 15, pp. 127-167.
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Chemically Enhanced Mineral Dissolution
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Effect of Chelating Agents on Antigorite Dissolution

" Syringe pump

-

..... --+-------> Syringe (volume

_____ U O, <10 1 0]

N

Lm)

(feed rate = 10 ml/min)

= 60 ml)

o Differential bed assembly

100 mg mineral sample on
> filter paper (pore size = 11

5.0%

4.0%

7| =——t==0.01 M Valeric Acid pH=2

empim= 0.01M Sodium Acetate pH=2

wgr==0.01M Sodium Succinate pH=

=== .01 M Sodium Butyrate pH=2

2

I_> Filtration :>

\/ (Pore size
=0.2 um)

ICP

g =001 M Sodium Lactate pH=2
E 3.0% - = 0.01M Sodium Propionate pH=2
g === DI Water pH=2
c i
o 2.0%
Q
1.0% -
0.0%) T T T 1
0 100 200 300 400
Time (s)
0.5% - —=#==0.01 M Valeric Acid pH=5
=i 0.01M Sodium Succinate pH=5
0.4% - we==(0.01M Sodium Acetate pH=5
) ——t—0.01M Sodium Lactate pH=5
c ==ifi==0.01M Sodium Butyrate pH=5
O 0.3% - =e=—0.01M Sodium Propionate pH=$
4 ——t=—DI Water pH=5
Q
>
e 0.2% -
(=}
Q
0.1% -
0-% T ey T T 1
50 100 150 200 250 300 350 400

10



"

Anaerobic Digestion

100% COD

Particulate Organic Material

Proteins

Carbohydrates

lipids

Hydrolysis
~21%
\

~40%
3

Amino Acids, Sugars

Fermentation 66%

44%

35%

N

y

20%
%‘

y 3%

~39% @

Fatty Acids
34%

00
B

Intermediary Products
Propionate, Butyrate etc.

34%

11%
12%

Acetate ¢

20%/ 4

23%

8% 11%

Y

Acetotroph

Methane

100% COD

0

> Hyd'rogen

Hydrogenotroph

Anaerobic
Oxidation

&2 COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK
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W. Gujer and A. J. B. Zehnder. 1983, Conversion process in anaerobic digestion, Water Science and Technology, Vol. 15, pp. 127-167.
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Effect of Aging Time at 295K
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Effect of Aging Time at 335K
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Effect of Reaction Temperature
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Effect of Chelating Agents
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Model System vs. Real System
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Biogasification
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of Organic Waste
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In-Situ Mineral Carbonation
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Accomplishments to Date

» Mineral characterization completed
» Thermodynamic modeling completed

» Fermentation of organic waste streams for volatile fatty-acid
production completed

» Investigation of microbial ecology of acidogenic fermentation
completed

» Design and fabrication of a high pressure reactor completed

> Kinetic and mechanistic studies of mineral dissolution and
carbonation almost done

» Characterization of mineral carbonates almost done
» Environmental and economic assessments still going on
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Summary

Various organic chelating agents can be produced by the process of
anaerobic digestion of organic waste.

Organic chelating agents can enhance the reaction rate in the mineral
dissolution step.

Effect of organic chelating agents on precipitated magnesium
carbonates formation is not significant.

By controlling the parameters of the crystallization system, the PMC can
be synthesized with the crystal structures that are suitable for the filler
materials.

Low concentrated organic chelating agents enhanced the overall
reaction rate in the one-step mineral carbonation slightly in short term.

Kinetic and mechanistic studies of mineral dissolution and
characterization of mineral carbonates will be continued.

Environmental and economic assessments will be continued.
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Organization Chart

Ah-hyung Alissa Park (Co-Pl),

Department of Earth and Environmental

Engineering, Columbia University

Kartik Chandran (Co-Pl),

Department of Earth and Environmental
Engineering, Columbia University

Juerg Matter (Co-Pl),

Columbia University

Lamont Doherty Earth Observatory (LDEO),

Edris Taher (GRA),

Department of Earth and Environmental
Engineering, Columbia University

Project: Anaerobic digestion studies

Huangjing Zhao (GRA),

Department of Earth and Environmental
Engineering, Columbia University

Project: Carbon mineralization studies
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Task/
Subtask# Tasks Year | Year Il Year 111
Qt1 | Qt2 | Qt3 | Qt4 | Qt1 | Qt2 | Qt3 | Qt4 | Qtl | Qt2 | Qt3 | Qt4

1.0 | Project Management, Planning, and Reporting

1.1 | Project Management Plan

1.2 | Reporting and Budgets

1.3 | Presentation and Briefings
Final Report Preparation

2.0 | Characterization of minerals and thermodynamic modeling
of CO,-mineral-brine systems with potential organic acids
(Phase 1)

2.1 | Mineral characterization

2.2 | Thermodynamic modeling

3.0 | Development of a microbial system for the production of
volatile fatty-acids from organic waste streams (Phase 11)

3.1 | Fermentation of organic waste streams for volatile fatty-acid
production

3.2 | Investigation of microbial ecology of acidogenic fermentation

4.0 | Kinetic and mechanistic studies of chemical enhancement of
mineral dissolution and carbonation using organic acids
(Phase 111)

4.1 | Design and fabrication of a high pressure reactor

4.2 | Kinetic and mechanistic studies of mineral dissolution and
carbonation

4.3 | Characterization of mineral carbonates

5.0 | Environmental and economic assessments (Phase 1V)
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