

Geo-Chemo-Mechanical Studies for Permanent Storage of CO₂ in Geologic Formations DE-FE0002386

Ah-hyung Alissa Park

Peter Kelemen, Jürg Matter, Greeshma Gadikota Columbia University in the City of New York

U.S. Department of Energy

National Energy Technology Laboratory
Carbon Storage R&D Project Review Meeting
Developing the Technologies and Building the
Infrastructure for CO₂ Storage

August 21-23, 2012

Presentation Outline

Benefit and Overview

Results and Accomplishments

- Mineral Characterization
- Effect of Temperature, Pressure and Chemical Additives on Mineral Carbonation
- Changes in Pore Structure and Morphology due to Carbonation
- Effect of Particle Size and Grinding on Mineral Carbonation
- Mineral Dissolution Studies
- Comparison of Mineral Morphology due to Mineral Dissolution and Carbonation
- Reactive Cracking

Summary

Benefit of the Program

Identify the Program goals being addressed.

Develop technologies to demonstrate that 99 percent of injected CO₂ remains in the injection zones surface area.

Project Benefits

The project is to identify the effect of in-situ carbonation on the stability of geologic formations injected with CO_2 . The technology, when successfully demonstrated, will provide valuable information on the stability of the CO_2 geological storage. This technology contributes to the Carbon Storage Program's effort of ensuring 99 percent CO_2 storage permanence in the injection zone(s).

Project Overview: Goals and Objectives

- (i) Determine and compare the effect of temperature, partial pressure of CO₂ and chemical additives on carbonation of various minerals such as olivine, anorthite and basalt
- Quantify changes in pore structure and particle size before and after carbonation and analyze changes in morphological structure of the mineral due to carbonation
- (iii) Determine fast and slow kinetics of mineral dissolution
- (iv) Compare and contrast changes in mineral morphology due to carbonation and dissolution
- (v) Determine the effect of pore fluid chemistry on mechanical behavior of rocks such as changes in hydrostatic compaction and strain on thermally cracked dunite saturated with CO₂-saturated brines

Risk Framework for Geological Storage of CO₂

CONSEQUENCES CHANGES IMPACTS INPUTS Linked through a combination of mathematical relationships Leakage rate through a Leakage through degraded Human health/welfare **Site-specific inputs** failed plug seal well-bore casing Linked through well-defined mathematical relations Ex: caprock thickness, Linked through various weights porosity, permeability Degradation of cement Static trapping of CO₂ Atmosphere of the rocks etc., casing and assigned weights Residual Trapping of CO₂ Flow rate through **Ecosystems** fracture **Process inputs** Ex: partial pressure of Changes in porosity, Mineral Trapping of CO₂ Water CO₂ injected, flow permeability and volume rate, CO₂ quantity etc., Extent of dissolution or Leakage through caprock Geosphere carbonation fractures

Material inputs

Ex: viscosity, solubility, density of CO₂ etc.,

Location of fresh water resources

CO₂ dissolution from annulus and well-bore

Carbon Storage in Geologic Formations

Mineral Carbonation and Reactive Cracking

caprock seal is good,

then cracking is ok

http://gwsgroup.princeton.edu/SchererGroup/ Salt Crystallization.html

Salt Crystallization

caprock seal is not good,

is there a problem?

Availability of Minerals

CO₂ Storage via In-situ Mineralization

Minerals of Interest

Mineral	MgO	CaO	Fe ₂ O ₃	SiO ₂	Al ₂ O ₃	Na ₂ O	K ₂ O	TiO ₂	MnO	Cr ₂ O ₃	V ₂ O ₅	LOI%	Sum %	Ni %
Olivine	47.3	0.16	13.9	39.7	0.2	0.01	<0.01	<0.01	0.15	0.78	< 0.01	-0.7	101.5	0.27
Anorthite	8.74	14.1	10.6	41.8	24.2	0.59	0.03	0.04	0.13	0.08	< 0.01	0.12	100.4	0.02
Basalt	4.82	8.15	14.6	51.9	13.4	2.91	1.09	1.74	0.21	0.10	0.06	0.27	99.6	0.04

4 times

Repeat

Mineral Cleaning Protocol

Determine particle size distribution of sample; if no particles <5 um, proceed directly to vacuum oven drying, otherwise follow the steps listed below

2 Add 45g of mineral to 10 µm sieve

Place sieve in ultrasonic bath filled with D.I. water

Shake sieve in ultrasonic bath for 5 minutes and fill fresh D.I. water

Filter and weigh the cleaned sample to determine the yield

Place the cleaned mineral samples in a vacuum oven at 70°C for 24 hours

Olivine: $Mg_2SiO_4 + 2CO_2 \rightarrow 2MgCO_3 + SiO_2$

Anorthite: $CaAl_2Si_2O_8 + CO_2 \rightarrow CaCO_3 + Al_2Si_2O_7$

Basalt is a mixture of plagioclase (anorthite), pyroxene

and olivine

Reaction Mechanisms

Formation of silica passivation layer

Research Scheme

Effect of Temperature and Pressure on Mineral Carbonation

- Increasing temperature results in higher extents of carbonation in olivine and anorthite
- Increasing partial pressure of CO₂ from 100 atm to 150 atm results in much higher carbonation of olivine
- Anorthite carbonation does not vary significantly with increasing pressure

Effect of Chemical Additives and Comparison of Carbonation in Minerals

- Addition of additives such as NaCl and NaHCO₃ increases extent of anorthite and olivine carbonation
- Addition of NaHCO3 is effective in enhancing mineral carbonation
- Extent of carbonation achieved with olivine> anorthite> basalt

Effect of Reaction Time on Olivine Carbonation Rates

Estimation of Extent of Carbonation using TGA

Effect of Reaction Time on Olivine Carbonation

Experimental Conditions: Olivine, 185°C, P_{CO2} = 150 atm, 15 wt.% mineral, 1.0M NaCl + 0.64M NaHCO₃ in high pressure, high temperature batch reactor

Changes in Mineral Morphology Due to Carbonation

- Carbonated mineral is obtained after the mineral is reacted with 150 atm of CO₂ at 185°C in 1.0M NaCl+0.64M NaHCO₃, 15 wt. % solid, 800 rpm for 3 hours
- Carbonated Unreacted Carbonated Unreacted Anorthite Anorthite Olivine Olivine Mean Particle 21.41 <u>+</u> 25.46 27.71 + 11.64 11.94 + 9.5212.42 + 8.52Diameter + Std. Dev. Surface Area (m²/g) 1.55 2.95 1.60 3.89 Pore Volume (cc/g)

0.008

0.009

0.005

0.013

- · Significant reduction in the pore volume, pore surface area after carbonation
- Increase in the mean particle diameter and narrower particle size distribution after carbonation due to carbonate crystal growth
- Surface area decreases up to 54% and 40% after anorthite and olivine carbonation respectively
- Significant decreases in porosity and surface area have implications on long-term insitu storage of CO2 in mineral formations

Unreacted vs. Carbonated Olivine

Effect of Grain Size and Grinding on Olivine Carbonation

Olivine Sample Type	Slurry of freshly ground old olivine sample (2012)	Freshly ground old olivine sample (2012)	Slurry of old olivine sample from 2010	Slurry of old olivine sample from 2010	Cleaned old olivine sample from 2010
Rxn Conditions	1.0M NaCl+0.64M NaHCO3, 185C, 150 atm, 800 rpm, 3 hours	1.0M NaCl+0.64M NaHCO3, 185C, 150 atm, 800 rpm, 3 hours	1.0M NaCl+0.64M NaHCO ₃ , 185C, 150 atm, 800 rpm, 3 hours	DI, 185C, 150 atm, 800 rpm, 3 hours	1.0M NaCl+0.64M NaHCO ₃ , 185C, 150 atm, 800 rpm, 3 hours
Particle Size Distribution	<20 µm	0.3-92 μm (95% < 37 μm)	<20 µm (for the sieved sample)	<20 µm (for the sieved sample)	10 – 90 μm
Extent of Carbonation	50.17%	47.09%	13.2%	1-2%	1-2%

- Fresh grinding of olivine results in a much higher extent of carbonation compared to old samples
- Particle size governs extent of carbonation Smaller the particle size, greater the extent of carbonation

Olivine Dissolution Kinetics – Fast vs. Slow Kinetics

• Effect of NaCl on enhancing olivine dissolution is more significant at lower temperatures

Extent of Olivine Dissolution and Activation Energy Determination

	(t	o) 1.0M NaCl	
	-16.8 -	•	-17.4 –
	-17.0 -	•	-17.6 -
			-17.8 -
	-17.2 -	•	-18.0 -
(gh	-17.4 -		7 -18.2 -
(rate		ate	-18.4
In (ra	-17.6 -	■ In (rate	-18.6 -
	-17.8 -		-18.8
	-18.0 -	■ 0-10 min	-19.0 - 10 min
	-10.0 -	10 min - Grid	10 min - end
	-18.2 -	Linear Fit of 0-10 min	-19.2 - Linear Fit of 0-10 min
	.0.2	Linear Fit of 10 min - end	Linear Fit of 10 min - end
	0.0	028 0.0029 0.0030 0.0031 0.0032 0.0033	0.0028 0.0029 0.0030 0.0031 0.0032 0.0033
		1/T (K ⁻¹)	1/T (K ⁻¹)

	E _a - DI (kJ/mol)	E _a - 1.0M NaCl (kJ/mol)	ΔE _a (kJ/mol)
Mg: 0-10 min	44.6	15.0	29.6
Mg: 10-180 min	59.7	24.6	35.1
Si: 0-10 min	57.9	29.8	28.1
Si: 10-180 min	61.3	26.7	34.6

Activation energy for the first 10 minutes of dissolution is considerably lower than the activation energy from 10-180 minutes.

NaCl has a significant effect on reducing the activation energy of olivine dissolution

Changes in Pore and Particle Size after Mineral Dissolution vs. Carbonation

Diameter (nm)

Diameter (nm)

Particle Diameter (um)

Reactive Cracking

Objective: Assess the effect of high CO₂ fluids on the behavior of ultramafic rocks such as <u>hydrostatic compaction</u>, <u>constant strain rate and constant displacement</u> creep experiments on thermally cracked dunite saturated with CO₂-saturated brines

- ➤ Autolab 1500 triaxial deformation apparatus from New England Research (NER)
- > Retrofitted fluid mixing system
- ➤ Independent T, P_{CO2} control
- ➤15 MPa confining pressure
- > 10 MPa pore pressure
- ➤ 150°C Temperature
- ➤ Thermally cracked dunite with ~ 1 mm grain size

Deformation of Rocks due to Reactive Cracking

- Sample Realtine Operation Fixty Sample Paints (0.4 | 0.0 | 0
- smooth, uniform crack surfaces in thermally cracked dunite supported by DOE DE-FE0002386 & C11E10947

- Deformed with reactive brine
- Pitting, signs of dissolution of olivine

probable Mgcarbonate, magnesite (MgCO₃) or nesquehonite, hydromagnesite

Accomplishments to Date

- Quantified extents of carbonation of the olivine and anorthite as a function of temperature, partial pressure of CO₂ and in the presence of various additives
- Demonstrated significant changes in pore structure, morphology and particle size occur after carbonation and dissolution
- Initial mineral dissolution rates are substantially higher than longer-term rates with preferential leaching of Mg which has implications for long-term storage of CO₂ in geologic formations
- Determined that reactive brines cause samples to deform more rapidly due to olivine dissolution

Summary

- Higher temperatures and presence of additives such as NaCl and NaHCO₃ have a significant impact on enhancing mineral carbonation
- Significant reduction in pore size and surface area after carbonation is evident
- In terms of reactivity with CO₂: olivine > anorthite > basalt
- Initial mineral dissolution rates are higher than longer-term dissolution rates with preferential leaching of Mg compared to Si. Therefore, characterizing initial weathering behavior is more important than previously anticipated
- Reactive brines cause samples to deform more rapidly due to olivine dissolution
- Rapid deformation is apparently due to olivine dissolution, reducing solid-solid contact area along fractures
- Permeability drops due to mechanical compaction are delayed; there is a sudden loss of connectivity, but not of porosity

Organization Chart

Gantt Chart

Tasks		Yea	ar I			Yea	ır II		Year III			
		Qt2	Qt3	Qt4	Qt1	Qt2	Qt3	Qt4	Qt1	Qt2	Qt3	Qt4
Task 1.0 Project Management, Planning and Reporting												
Task 2.0 Laboratory Experiments on Carbonation Kinetics of												
Peridotite and Basalt												
Subtask 2.1 Selection of rocks to be studied												
Subtask 2.2. Determination of mineralization with varying pressure												
Subtask 2.3 Determination of mineral rates under varying temperature												
Subtask 2.4 Analysis of carbonated samples												
Task 3.0 Laboratory Study of Catalytic Effects on Carbonation												
Kinetics of Peridotite and Basalt												
Subtask 3.1 Selection of minerals and basaltic glass to be studied												
Subtask 3.2 Mineralization as a function of varied mineral composition												
Subtask 3.3 Mineralization as a function of varied pressure												
Subtask 3.4 Varied temperature and/or combined variables												
Subtask 3.5 Analysis of carbonated samples												
Task 4.0 Laboratory Testing of "Reactive Cracking" Hypothesis												
Subtask 4.1 Initial experiments												
Subtask 4.2 Experiments with varying fluid pressure												
Subtask 4.3 Experiments with deviatoric confining pressure												
Subtask 4.4 Analysis of carbonated samples												

Bibliography

<u>Journal, multiple authors</u>:

- Gadikota, G., Matter J., Kelemen P.B., and Park, A-H.A, Mineral Cleaning Procedures and Effect of Grinding on Olivine Carbonation (In Preparation)
- Kelemen, P.B. and G. Hirth, Reaction-driven cracking during retrograde metamorphism: Olivine hydration and carbonation, Earth Planet. Sci. Lett 345–348, 81–89 2012
- Kelemen, P.B., J. Matter, E.E. Streit, J.F. Rudge, W.B. Curry, J. Blusztajn, Rates and mechanisms of mineral carbonation in peridotite: Natural processes and recipes for enhanced, in situ CO2 capture and storage, Ann. Rev. Earth Planet. Sci. 39, 545–76, 2011
- Paukert, A.P., J.M. Matter, P.B. Kelemen, E.L. Shock and J.R. Havig, 2012, Reaction path modeling of enhanced in situ CO2 mineralization for carbon sequestration in the peridotite of the Samail Ophiolite, Sultanate of Oman: Chem. Geol., in press 2012
- Streit, E., P.B. Kelemen, and J. Eiler, Coexisting serpentine and quartz from carbonate-bearing serpentinized peridotite in the Samail Ophiolite, Oman, Contrib. Mineral. Petrol., online, DOI 10.1007/s00410-012-0775-z, 2012, print publication in press.

Conference Proceedings:

- Gadikota, G., Zhao H., Kelemen P.K., & A.-H. A. Park, "Carbon Mineralization via Carbonation of Calcium and Magnesium-bearing Minerals as Permanent Storage of Anthropogenic CO₂," The 28th International Pittsburgh Coal Conference, Pittsburgh, PA, Sept., 12-15, 2011.
- Gadikota, G. & A.-H. A. Park, "Thermodynamic and Kinetic Studies of Mineral Trapping of Carbon in Geologic Formations," AIChE annual meeting, Salt Lake City, UT, November 7-12, 2010.

Additional Slides

Effect of Temperature on Olivine Carbonation

Temperature (°C)	Mean Particle Diameter <u>+</u> Std. Deviation	Extent of Carbonation (%)			
Unreacted	21.41 <u>+</u> 25.46 μm	-			
125°C	$18.51 \pm 10.43 \ \mu m$	24.35%			
150°C	$25.40 \pm 10.59 \ \mu m$	50.93%			
185°C	$27.71 \pm 11.64 \; \mu m$	57.17%			

Experimental Conditions: Olivine, 1.0M NaCl + 0.64M NaHCO₃ , P_{CO2} = 150 atm, 15 wt.% mineral, 800 rpm in high pressure, high temperature batch reactor

Effect of Pressure on Olivine Carbonation

Pressure	Mean Particle Diameter <u>+</u> Std. Deviation	Extent of Carbonation (%)
Unreacted	21.41 <u>+</u> 25.46 μm	-
100 atm	$20.67 \pm 10.45 \mu m$	31.55%
150 atm	27.71 <u>+</u> 11.64 μm	57.17%
175 atm	27.96 <u>+</u> 9.42 μm	56.91%

Effect of Reaction Time on Olivine Carbonation

v	T (C)	700
Time (hours)	Mean Particle Diameter <u>+</u> Std. Deviation	Extent of Carbonation (%)
Unreacted	21.41 <u>+</u> 25.46 μm	-
1 hour	17.57 <u>+</u> 9.35 μm	39.20%
3 h ours	18.68 <u>+</u> 7.01 μm	58.82%
6 hours	19.93 <u>+</u> 7.21 μm	63.51%

Changes in Composition and Morphology Before and After Olivine Carbonation

Mineral Composition using XRF Analysis (%)

Mineral	MgO	CaO	Fe ₂ O ₃	SiO ₂	Al ₂ O ₃	Na ₂ O	K ₂ O	TiO ₂	P ₂ O ₅	MnO	Cr ₂ O ₃	V_2O_5	LOI	Sum	Ni
Unreacted Olivine	47.3	0.16	13.9	39.7	0.2	0.01	<0.01	<0.01	< 0.01	0.15	0.78	< 0.01	-0.7	101.5	0.27
Reacted Olivine	32.2	0.11	9.25	26.9	0.14	0.28	<0.01	<0.01	< 0.01	0.10	0.53	< 0.01	30.4	100.0	0.19

Unreacted Olivine

Reacted Olivine at 185°C, 150 atm, 1.0M NaCl, 0.64M NaHCO₃, 800 rpm, 15 wt. % solid

Effect of Chemical Additives on Anorthite Carbonation

Additives	Mean Particle Diameter <u>+</u> Std. Deviation	Extent of Carbonation (%)
Unreacted	$11.94 \pm 9.52 \ \mu m$	-
DI	$11.78 \pm 8.54 \ \mu m$	8.45%
1.0M NaCl	11.89 <u>+</u> 9.49 μm	9.66%
1.0M NaHCO ₃	14.34 <u>+</u> 12.26 μm	26.63%
1.0M NaCl+0.64M NaHCO ₃	$12.42 \pm 8.52 \ \mu m$	25.53%

Results Summary

	Reaction Conditions	Mean Particle Diameter <u>+</u> Std. Deviation	Extent of Carbonation (%)
	Unreacted	21.41 <u>+</u> 25.46 μm	-
	DI, 185°C, 150 atm	16.43 <u>+</u> 11.85 μm	4.40%
	1.0M NaCl, 185°C, 150 atm	26.54 <u>+</u> 12.77 μm	37.44%
Φ	1.0M NaHCO ₃ , 185°C, 150 atm	32.76 <u>+</u> 14.39 μm	50.60%
Olivine	1.0M NaCl+0.64M NaHCO ₃ , 185°C, 150 atm	27.71 <u>+</u> 11.64 μm	49.30%
0	1.0M NaCl+0.64M NaHCO ₃ , 150°C, 150 atm	25.40 <u>+</u> 10.59 μm	43.93%
	1.0M NaCl+0.64M NaHCO ₃ , 125°C, 150 atm	18.51 <u>+</u> 10.43 μm	21.05%
	1.0M NaCl+0.64M NaHCO ₃ , 185°C, 100 atm	20.67 <u>+</u> 10.45 μm	27.21%
	1.0M NaCl+0.64M NaHCO ₃ , 185°C, 175 atm	27.96 <u>+</u> 9.42 μm	49.08%
	Unreacted	11.94 <u>+</u> 9.52 μm	-
ite	DI, 185°C, 150 atm	11.78 <u>+</u> 8.54 μm	8.45%
Anorthite	1.0M NaCl, 185°C, 150 atm	11.89 <u>+</u> 9.49 μm	9.66%
An	1.0M NaHCO ₃ , 185°C, 150 atm	14.34 <u>+</u> 12.26 μm	26.63%
	1.0M NaCl+0.64M NaHCO ₃ , 185°C, 150 atm	12.42 <u>+</u> 8.52 μm	25.53%

Changes in Pore and Particle Size Distribution due to **Mineral Dissolution and Coupled Reactions**

Conclusion

- Additives such as NaCl and NaHCO₃ enhance mineral carbonation significantly
- Determined that increasing [NaHCO₃] increases olivine and anorthite carbonation
- Average particle diameter increases and particle size distribution becomes narrower with higher carbonation
- Pore size decreases with increasing carbonation this has implications for in-situ mineral carbon storage

Questions?