Presentation Outline

• Goals and objectives
• Success criteria
• Technical Status
• Accomplishments to date
• Summary of key findings and lessons learned
• Future plans
Benefit to the Program – Goals and Objectives

• GEO-SEQ is a broad program supporting the Carbon Storage Program’s major storage goals
 – Develop technologies that will support industries’ ability to predict CO₂ storage capacity in geologic formations to within ± 30%
 – Develop technologies to demonstrate that 99 percent of injected CO₂ remains in the injection zones
• The GEO-SEQ project leverages scientific understanding and technology development through collaboration with highly visible, ongoing, world-class projects including the Otway Project and In Salah JIP. In Fy12 GEO-SEQ initiated a new collaboration with the PTRC’s-managed Aquistore Project.
• GEO-SEQ investigates fundamental geochemical and petrophysical processes that underpin GCS merging laboratory research to address field-scale issues
Project Overview: Success Criteria

- Fundamental Studies process and response studies – success criteria is the petrophysical measurement of reservoir and cap rock using the resonant bar system at frequencies relevant to field scale.
- CO2CRC Otway Project collaboration – success criteria is the collection of field-scale data and interpretation to establish a single-well residual saturation test.
- In Salah JIP – success criteria is presentation of unique data collected in collaboration with InSalah researchers of the Joint Industry Partnership (JIP).
- Geochemical Assessment – the success criteria is development of a methodology for assessing the suitability of saline aquifers and depleted oil reservoirs for carbon sequestration.
Technical Status

• International collaboration – field demonstrations
 – Australia’s CO2CRC Otway Project (since 2005)
 – In Salah JIP Project (since 2006)
 – Aquistore Project (new collaboration started in 2012)

• Fundamental Studies (since 2009)
 – Laboratory Petrophysics
 – Laboratory Tracer Testing Studies
 – Coupled Reservoir Modeling and Field Monitoring
 – Monitoring Technology Development

• Geochemical Assessment (since 2010)
Leveraging $15M Australian Program –

- LBNL Supplied CRC-2 monitoring equipment
- Performed successful completion
- Participated in 75 day field campaign to measure residual gas saturation
FY12 Accomplishment:
Otway Stage 2b: Residual Gas Saturation Test
Otway Project – May 2012
FO Seismic acquisition

LBNLAUS_120621004129.tdms; 41-fold stack

LBNLAUS_120621004129.tdms; stack upgoing
Otway FY13 Planning for Stage 2c
10,000 – 30,000 T injection

Addition of Crosswell to Seismic Monitoring Plan
Permanent seismic monitoring array

Courtesy Pevzner, et al., 2011

LBNL Orbital Vibrator Seismic Source
In Salah Project FY12

- Simulation of Large Scale Deformation and Stress Changes via Coupled Modeling
 - Constraining fracture zone height; Induced seismicity with cooling effects; New models for stress and multiphase flow in fractured reservoirs
- Inverse Modeling
 - Well scale model (Initial forward model); Reservoir scale model (Leverage with NRAP-ARRA)
- Analysis of Ground Surface Deformations from InSAR
 - Horizontal and vertical components
- Microseismic Monitoring and Analysis
- Fracture Based Seismic Analysis
 - 3D seismic being reprocessed and analyzed for fractures
Fracture-based seismic analysis

In collaboration with Dr. Harbert of the Univ. of Pittsburgh
Subtask 2.4: Aquistore Project

Fiber Optic Distributed Seismic
- Field testing and analysis of new fiber-optic monitoring technology
- LBNL collaborating with PTRC-led project to install a fiber-optic cable for performing acoustic and DTS monitoring of the Aquistore’s injection well

VSP Data from Borehole Fiber

Miller, et al., EAGE, 2012
Highly leveraged research –

Using the large investment in the Aquistore project, perform a direct comparison of fiber-optic DAS and conventional geophone technology.
Subtask 3.1: Petrophysics

Lab measurement of seismic velocity vs CO$_2$ saturation – Tuscaloosa (Cranfield)

Velocity Measurement comparing ultrasonic and resonant bar
(a) Dry
(b) Brine saturated

CO$_2$ Injection into core

Drs. Nakagawa & Kneafsey, LBNL
Geochemical Assessment

Cranfield Mixed Flow Reactor Experiments

- Cran#1 w/o O₂ control
- Cran#1b O₂ controlled by methane fugacity
 - Little impact on chlorite dissolution rate or pH
 - Strong impact on metal release rate and concentration
Accomplishments to Date

• Fundamental Studies
 - Development of monitoring tools using leveraged field opportunities
 – U-tube fluid sampler and the piezo-tube seismic source
 - Laboratory Phase-Partitioning Tracer Studies (Krypton completed)
 - Conducted Petrophysical Laboratory Measurements using resonant bar apparatus

• Otway Project
 - Successfully installed multifunction monitoring system in CRC-2
 - Completed 75 day residual saturation test program
 - Performed a walk-away VSP using a fiber-optic acoustic monitoring system
Accomplishments to Date

• In Salah JIP Project
 – Performed Simulation of Large Scale Deformation and Stress Changes via Coupled Modeling (1) Constraining fracture zone height; (2) Induced seismicity with cooling effects; (3) New models for stress and multiphase flow in fractured reservoirs
 – Inverse Modeling using both Well scale model (Initial forward model); Reservoir scale model (Leverage with NRAP-ARRA)
 – Analysis of Ground Surface Deformations from InSAR with both horizontal and vertical components
 – Microseismic Monitoring and Analysis
 – Fracture Based Seismic Analysis with 3D seismic being reprocessed and analyzed for fractures

• Geochemical Assessment
 – Completed all phases for clean sand, dirty sand and altered sand
 – Participated in GaMin’11 international calibration exercise
 – Developed CO₂ sequestration research experimental protocols
Summary – Key findings & lessons learned
Task 1 Fundamental studies
Tom Daley (PI)

• Key findings
 – The resonant bar technique has proven valuable in understanding wave propagation at field relevant frequencies
 – measurement of saturation vs velocity for Cranfield (Tuscaloosa) using resonant bar showed effects of "patchy" saturation and strong anisotropy

• Lessons learned
 – Commencement of testing of orbital vibrator seismic source for CO₂ monitoring revealed need for significant engineering investment before future field deployment.
Key findings

- Otway Project Stage 1 demonstrated safe secure storage of CO$_2$ in a depleted gas reservoir (PNAS publication)
- Otway Project Stage 2 Residual Gas Saturation test shows both the potential and difficulties in the single-well approach

Lessons learned

- Careful planning and simplified engineering can result in a fully operational well-based monitoring system
Key findings

- The use of ground surface monitoring by InSAR has exceeded all expectations, enabling monitoring of the underground injection performance and detection fluid movements and fluid pressure propagation through underground geological structures.
- Potential injection-induced opening of deep fracture zones at the lower part of the caprock have been identified and analyzed in terms of coupled geomechanical processes and fracture zone geometry.
- A 3D seismic survey has been very valuable to independently identify such fracture zones at depth in the lower part of the caprock.
- The combined monitoring of InSAR and microseismicity, complemented by 3D seismic survey have proven to be useful for monitoring and early detection of unwanted geomechanical changes, and preventative actions could be taken, such as lowering injection pressure.

Lessons learned

- Micro-seismic monitoring shows a correlation between number of events and injection rates, but more comprehensive seismic network would be needed and should have been deployed before the start of the injection for optimum utilization as a monitoring tool.
• Key findings
 – Metals are released from all reservoir rock types by acidification by CO$_2$, but as the solution is neutralized by continued interaction, the metals largely re-associate with the rock. Specific details depend upon reservoir rock type.

• Lessons learned
 – The redox state is important in understanding metal release and ultimate fate of mobilized metals.
Future Plans (FY13)

- **Fundamental processes**
 - Continue to use resonant bar system to investigate seismic propagation
 - Investigate use of fiber-optic acoustic technology and further engineer borehole orbital vibrator

- **Otway Project**
 - Continue analysis of Stage 2b data
 - Participate in Stage 2c injection test and geophysical monitoring (cross-hole orbital vibrator)

- **InSalah JIP**
 - Continue detailed coupled process model analysis
 - Investigate fracture propagation in caprock
 - Continue interpretation of InSAR data

- **Aquistore**
 - Use fiber-optic methods, participating in initial 1600 T injection experiment followed by much larger injection

- **Geochemical Assessment**
 - Complete carbonate case experiments
 - Complete “real” brines experiments
 - Design simplified tests specific to rock type
Appendix
Organization Chart

Project Coordination and management: Barry Freifeld and Tom Daley

Task PIs

- Task 1: Fundamental Processes
 - Tom Daley
- Task 2: Otway Project
 - Barry Freifeld
- Task 3: In Salah JIP
 - Jonny Rutqvist
- Task 4: Geochem Assess Studies
 - Kevin Knauss

LBNL Scientists and Technical Staff

- Brian Bonner, Paul Cook, Christine Doughty, Stefan Finsterle, Jonathan Ajo-Franklin, Karl Kappler, Burton Mack Kennedy, Timothy Kneafsey, Jennifer Lewicki, Hui-Hai Liu, Ernie Majer, Alejandro Morales, Seiji Nakagawa, Curt Oldenburg, John Peterson, Karsten Pruess, Tian-Fu Xu, Donald Vasco, Yingqi Zhang

Collaborating Organizations – primary contacts

- Australian CO2CRC – Richard Aldous, Matthias Raab, Rajindar Singh
- Texas Bureau Economic Geology – Susan Hovorka, Tip Meckel
- In Salah JIP (BP, Sonatrach, Statoil) – Alan Mathieson, Iain Wright
- USGS Menlo Park – Yousif Kharaka
- ORNL – Tommy Phelps
- Alberta Innovates – Ernie Perkins
- Simon Fraser University – Dirke Kirste
- CSIRO Petroleum – Linda Stalker
- Geosciences Australia – Chris Boreham
Multidisciplinary Team Capabilities

Geophysics
- Tom Daley – instrumentation, acquisition
- Ernie Majer – microseismic, crosshole, VSP
- Jonathan Ajo-Franklin – seismic processing
- Don Vasco – inverse modeling
- Brian Bonner, Seiji Nakagawa, Tim Kneafsey – lab studies
- Jonny Rutqvist – TOUGH-Flac

Numerical Models/Code Development
- Christine Doughty
- Curt Oldenburg – Eos7c
- Lehua Pan
- Barry Freifeld – instrumentation, field testing, tracers
- Paul Cook – field testing
- Yingqi Zhang, Stefan Finsterle – iTough2

Geomechanics
- Hui-Hai Liu – coupled hydro-mechanical processes

Hydrology
- Kevin Knauss – lab studies
- Mack Kennedy – isotopes
- Kevin Knauss – lab studies
- Tian-Fu Xu – TOUGHReact

Geochemistry
- Kevin Knauss – lab studies
- Christine Doughty
- Curt Oldenburg – Eos7c
- Lehua Pan
- Mac Kennedy – isotopes

Additional Contributions
- Brian Bonner, Seiji Nakagawa, Tim Kneafsey – lab studies
- Jonny Rutqvist – TOUGH-Flac
- Hui-Hai Liu – coupled hydro-mechanical processes
- Yingqi Zhang, Stefan Finsterle – iTough2
Task 1. Fundamental Processes Milestones

<table>
<thead>
<tr>
<th></th>
<th>FY10</th>
<th>FY11</th>
<th>FY12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1 Fundamental processes and response studies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Petrophysical laboratory measurements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2 Laboratory phase-partitioning tracers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3 Coupled reservoir model and field data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4 Monitoring technology development</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milestones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY10 Q4 Completion of documentation in support of commercializing CASSM technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY11 Q2 Report on initial resonant bar measurement of seismic velocity and attenuation as a function of CO2 saturation for standard core sample</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY12 Q2 Report on initial resonant bar measurement of seismic velocity and attenuation as a function of CO2 saturation for reservoir core sample.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Task 2. Otway Project

<table>
<thead>
<tr>
<th>2.1 Field testing</th>
<th>FY10</th>
<th>FY11</th>
<th>FY12</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2 Laboratory measurements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3 Modeling and simulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4 Planning and coordination</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Milestones

| FY10 Q1 Preliminary design of a Single-Well Huff-N-Puff test for Otway Stage II |
| FY11 Q1 Description of instrumentation for monitoring the Single-Well Huff-N-Puff test for Otway Stage II |
| FY12 Q3 Otway Stage 2c experiment design report |
| FY12 Q1 Preliminary interpretation and data report from the Otway Project Stage 2b test |
Task 3. In Salah JIP

<table>
<thead>
<tr>
<th></th>
<th>FY07</th>
<th>FY08</th>
<th>FY09</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Reservoir data collection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2 InSAR data analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3 Simulation of injection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4 Deployment of surface seismic network</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5 Simulation of stress change</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Milestones

- **FY10 Q3** InSalah microseismic monitoring: Documentation of the instrument design and the as-built, as-installed, field instrumentation.
- **FY11 Q3** Interim assessment of surface deformation for the In Salah demonstration project using acquired satellite-based interferometry (InSAR) data.
- **FY11 Q3** InSalah microseismic monitoring: Report on data acquisition using the microseismic array.
- **FY12 Q2** Interim assessment of Algerian In Salah storage project time lapse surface changes integrated with geomechanical models.
Task 4. Geochemical Assessment

<table>
<thead>
<tr>
<th>_task_3_in_salah_jip_gas_project</th>
<th>FY10</th>
<th>FY11</th>
<th>FY12</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Site Data and Sample Acquisition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2 Experiment Simulation and Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3 Reaction Progress Experiments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4 Assessment Methodology or SOP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Milestones

<table>
<thead>
<tr>
<th></th>
<th>FY10</th>
<th>FY11</th>
<th>FY12</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bibliography 2012
