Slipstream pilot plant demonstration of an amine-based post-combustion capture technology for CO$_2$ capture from coal-fired power plant flue gas

DOE funding award DE-FE0007453

2012 NETL CO$_2$ Capture Technology Meeting
Krish R. Krishnamurthy, Linde LLC
July 9-12, 2012
Pittsburgh, PA
The Linde Group Overview and Carbon Capture Expertise

- **Founded**: 1879
- **Sales (2011)**: $18 billion
- **Employees**: 50,000
- **Countries**: >100
- **US Linde Gas HQ**: Murray Hill, NJ
- **US Linde Engineering Facilities**: Blue Bell, PA; Tulsa, OK & Holly Springs, GA

Leveraging Synergies

Linde pursues technology development and solution offer in all three CC pathways

Post-combustion capture
- **Linde expertise**
 - Scrubbing system
 - CO₂ processing (drying, compression and purification)
 - CO₂ suitable for storage
 - Air
 - Feedstock
 - Combustion and steam generation
 - Steam
 - Power generation and heat recovery

Pre-combustion capture
- **Linde expertise**
 - Air separation unit
 - Shift
 - CO₂ recovery
 - CO₂ in storage
 - Oxygen
 - Raw syngas
 - Conditioned syngas
 - Gasification
 - Power generation and heat recovery

Oxyfuel combustion
- **Linde expertise**
 - Air separation unit
 - Recycled CO₂
 - CO₂ in storage
 - Oxygen
 - Recycled CO₂
 - CO₂ liquefaction
 - CO₂ in storage
 - Combustion and steam generation
 - Steam
 - Power generation and heat recovery

Linde Engineering
- Technology-focused

- Air Separation
 - Global #1
 - Global #2
 - Global #3
- Hydrogen/Syn Gas
 - Global #1
 - Global #2
- Olefins
 - Global #2
 - Global #3
- Natural Gas
 - Global #3

Linde Gas - Tonnage
- World-class operations

- HyCO Tonnage Plants
 - >70 plants
- ASU Tonnage Plants
 - >300 plants
- ECOVAR Std Plants
 - >1,000 plants

Leveraging

Synergies
<table>
<thead>
<tr>
<th>Partner/Organization</th>
<th>Lead contact(s)</th>
<th>Key Role(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE-NETL</td>
<td>Andrew P. Jones, Project Manager</td>
<td>-Funding & Sponsorship</td>
</tr>
</tbody>
</table>
| Linde LLC | Krish Krishnamurthy, PI Stevan Jovanovic, Technical Lead | -Prime contract
-Overall program management
-Operations and testing |
| BASF | Iven Clausen (BASF SE) Sean Rigby (BASF Corp) | -OASE® blue technology owner
-Basic design
-Solvent supply and analysis |
| EPRI | Richard Rhudy | -Techno-economics review
-Independent validation of test analysis and results |
| Southern Co./NCCC | Frank Morton Michael England | -N CCC Host site (Wilsonville, AL)
-Infrastructure and utilities for pilot plant build and operations |
| Linde Engineering, Dresden | Torsten Stoffregen Harald Kober | -Basic engineering
-Support for commissioning
-Operations and testing |
| SFPC (Linde Eng) | Lazar Kogan | -Detailed engineering
-Procurement and installation |
Overall Objective

- Demonstrate Linde-BASF post combustion capture technology by incorporating BASF’s amine-based solvent process in a 1 MWel slipstream pilot plant and achieving at least 90% capture from a coal-derived flue gas while demonstrating significant progress toward achievement of DOE target of less than 35% increase in levelized cost of electricity (LCOE)

Specific Objectives

- Complete a techno-economic assessment of a 550 MWel power plant incorporating the Linde-BASF post-combustion CO₂ capture technology to illustrate the benefits
- Design, build and operate the 1MWel pilot plant at a coal-fired power plant host site providing the flue gas as a slipstream
- Implement parametric tests to demonstrate the achievement of target performance using data analysis
- Implement long duration tests to demonstrate solvent stability and obtain critical data for scale-up and commercial application
Project schedule and milestones: Budget Period 1

<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>Qtr 4, 2011</th>
<th>Qtr 1, 2012</th>
<th>Qtr 2, 2012</th>
<th>Qtr 3, 2012</th>
<th>Qtr 4, 2012</th>
<th>Qtr 1, 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1. Project management and planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a. Submit project management plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>b. Conduct kick-off meeting</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>c. Host site agreement executed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2 Technoeconomic evaluation on a 550 MWe power plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2.1 Design and scope for power plant with CO2 capture and compression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2.2 Detailed design of the power plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.3 Economic analysis of the power plant with CO2 capture and compression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>d. Complete initial techno-economics analysis on a 550 MWe power plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3 Pilot plant design optimization & basic design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3.1 Solvent selection and basic design & process design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3.2 Parametric design optimization and confirmation of design basis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>3.3 Basic design package of the pilot plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>d. Complete basic design and engineering of the 1 MWe pilot plant to be tested at the NCCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4. Pilot plant system design and engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4.1 Preliminary engineering studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>4.2 Process design review and HazIDP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>4.3 Detailed design and engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>4.4 Development of equipment packages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4.5 Site design, engineering and foundations specification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>5. Pilot plant cost and safety analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>5.1 Preliminary pilot plant E&S cost analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>5.2 Transportation and lifting study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>g. Complete pilot plant engineering and cost analysis for the 1 MWe unit to be tested at NCCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Go - No Go decision to build pilot plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Budget Period 2: March 2013 to February 2014 (Pilot plant procurement, fabrication and installation)

Budget Period 3: March 2014 to November 2015 (Pilot plant operations, parametric and long-duration testing)
Project Budget: DOE funding and cost share

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DOE Funding</td>
<td>$2,215,352</td>
<td>$9,822,449</td>
<td>$2,754,564</td>
<td>$14,792,365</td>
</tr>
<tr>
<td>Cost Share</td>
<td>$553,838</td>
<td>$2,455,612</td>
<td>$688,641</td>
<td>$3,698,091</td>
</tr>
<tr>
<td>Total Project</td>
<td>$2,769,190</td>
<td>$12,278,061</td>
<td>$3,443,205</td>
<td>$18,490,456</td>
</tr>
</tbody>
</table>

Cost share commitments:
- Linde: $3,107,352
- BASF: $493,360
- EPRI: $97,379
Key Project Milestones (Budget Period 1)

- Submit project management plan (03/09/2012)
- Conduct kick-off meeting with DOE-NETL (11/15/2011)
- Complete initial techno-economic analysis on a 550 MWel power plant (05/04/2012)
- Complete basic design and engineering of a 1 MWe pilot plant to be tested at NCCC (06/20/2012)
- Execute host site agreement (10/31/2012)
- Complete initial EH&S assessment (10/31/2012)
- Complete detailed pilot plant engineering and cost analysis for the 1 MWe pilot plant to be tested at NCCC (01/31/2013)
Key Project Milestones (Budget Periods 2 and 3)

— Complete purchase orders and fabrication contracts for the 1 MWe pilot plant (03/29/2013)
— Complete shop fabrication of equipment and modules and associated engineering checks (07/31/2013)
— Complete site preparation and foundation installations at NCCC to receive pilot plant (08/15/2013)
— Complete installation of the 1 MWe pilot plant at NCCC (11/30/2013)
— Mechanical completion of 1 MWe pilot plant at NCCC (02/28/2014)

Budget Period 3 (Mar. 1, 2014 – Nov. 30, 2015)

— Complete pilot plant start up and demonstrate plant operation at steady state (05/31/2014)
— Develop pilot-scale parametric test plan (06/30/2014)
— Complete 1 MWe pilot-scale parametric tests (11/30/2014)
— Develop pilot-scale long duration test plan (12/31/2014)
— Complete 1 MWe pilot-scale long duration tests (08/31/2015)
— Complete updated techno-economic analysis (10/31/2015)
— Complete updated EH&S assessment (11/30/2015)
Linde-BASF experience in large scale carbon capture
CO₂ capture in natural gas processing:
Re-injection Project - Hammerfest

World’s first industrial project to deliver CO₂ separated onshore from the well-stream back offshore for re-injection into a reservoir
— Partnership with StatoilHydro Petroleum
— Melkoya island near the town of Hammerfest, Norway
— CO₂ sequestration and re-injection integral part of the Hammerfest LNG project. Linde performed design, EPC and commissioning
— One dedicated well for CO₂ storage in a sandstone formation sealed by shale cap.
— Re-injection started in April 2008
— BASF’s OASE® purple process used in CO₂ capture

700,000 tpa CO₂ capture and re-injection (part of world scale LNG project, Snøhvit, Norway)
Post combustion CO₂ capture: Challenges compared to CO₂ removal in NG/LNG plants

<table>
<thead>
<tr>
<th></th>
<th>NG/LNG</th>
<th>Flue gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>50 – 100 bars</td>
<td>1 bara</td>
</tr>
<tr>
<td>CO₂ partial pressure</td>
<td>1 – 40 bars</td>
<td>30 – 150 mbars</td>
</tr>
<tr>
<td>Flowrate</td>
<td>up to 60 mio scf/hr</td>
<td>up to 120 mio scf/hr</td>
</tr>
<tr>
<td>Gas composition</td>
<td>CH₄, C₂H₆, ..., CO₂, H₂S, COS, CₓHᵧ,S, H₂O</td>
<td>N₂, O₂, H₂O, CO₂, (SOₓ) NOₓ</td>
</tr>
<tr>
<td>Treated gas specification</td>
<td>50 ppm – 2 % CO₂</td>
<td>CO₂ removal rate (90 %)</td>
</tr>
<tr>
<td></td>
<td>S < 4 – 10 ppm</td>
<td>low amine emissions</td>
</tr>
<tr>
<td>Energy efficiency</td>
<td>not a key issue</td>
<td>of highest priority</td>
</tr>
</tbody>
</table>

- large volume flows @ low pressure
- solvent stability
- emissions of solvent
- overall power plant efficiency losses
BASF OASE® blue Technology Development
Designed for PCC Applications

Fundamental Lab Scale R&D:
Advanced Solvents Screening, Development, Optimization

BASF Miniplant,
Ludwigshafen, Germany:
Solvent Performance Verification

0.45 MWe PCC Pilot,
Niederaussem, Germany:
Preliminary Process Optimization
Niederaussem* pilot plant key results

- >90% carbon capture rate achieved
- >20% improvement in specific energy compared to MEA
- New BASF solvent is very stable compared to MEA

Acknowledgement: * Pilot project partner RWE
Solutions for Large Scale PCC Plant (1100 Mw \textsubscript{el} Power)

Design challenges

Optimizing CAPEX by reduced number of trains to handle 18,000 tpd CO\textsubscript{2}
- 2 process trains selected
- reduced plot space

Compressor section
- two lines per train
 - flexible turn down operation

Lower number of trains results in bigger size of components, e.g.
- Absorption column: diameter ca. 18 m, height ca. 75 m \rightarrow on site fabrication required
- Pipes ducts and valves: diameters up to 7 meters
- Plot: ca. 100 m x 260 m
Concepts for a Large Scale PCC Plant
Key elements of plant costs

Main challenges
— Large equipment size requires new concepts
— Required plot area is very significant
— Alternative materials need to be assessed
— New equipment arrangements needed
— Field fabrication
— Large pipe and duct

Linde studies to address challenges
— Scaling to a very large single train
— Optimize equipment arrangement (flue gas blower, pre-cooler, absorption columns sump etc)
— Develop new column construction materials
— Optimize machinery options
Linde-BASF advanced PCC plant design*

Advanced emission control system

High capacity structured packing

Advanced Column Material & Design

Optimized Blower Concept

Gravity Flow Interstage Cooler

Optimized Energy Consumption

Higher Desorption Pressure

Optional Interstage Heater

Treated flue gas to stack

Flue gas blower

Make-up water

Water Cooler

Absorber

Interstage Cooler

Solvent Filter

Solvent Cooler

Water Wash

Desorber

RichLean Solvent Hex

Reboiler

Condensate return

LPMP_Steam

LP_Steam

Condensate

Separator

Condenser

CO2 to Compression

NaOH Tank

Cooler

DCC

Flue gas

Optimal Applications 2010-2012

Project progress and accomplishments

<table>
<thead>
<tr>
<th>Task#</th>
<th>Task Description</th>
<th>Key Objectives</th>
<th>Accomplishments</th>
</tr>
</thead>
</table>
| 1 | Program Management | Complete project management plan and implement to agreed cost and schedule. | - Project kick-off meeting held
- Updated project management plan completed |
| 2 | Techno-economic evaluation | Complete techno-economic analysis on a 550 MWe coal-fired power plant incorporating Linde-BASF PCC technology. | - Techno-economic assessment completed and presented to DOE-NETL |
| 3 | Pilot plant optimization and basic design | Define pilot plant design basis and the key features incorporated. Complete basic design and engineering. | - Design basis document completed and pilot plant features selected.
- Basic design and engineering completed. |
| 4 | Pilot plant system design and engineering | Complete detailed design and engineering of the pilot plant (ready to build). | - Preliminary 3-D model developed
- Detailed engineering in progress (30% model) |
| 5 | Pilot plant cost and safety analysis | Complete preliminary environment, health and safety assessment for the pilot plant | - Preliminary NEPA document completed.
- Hazop review completed and design updates incorporated. |
Basis for techno-economic assessment for 550 MWₑ power plant with 90% CO₂ capture

Specifications and Design Basis

- Bituminous Illinois #6 Coal Characteristics
- Site Characteristics and Ambient Conditions
- Pulverized Coal Boiler Design
- Subcritical Steam Turbine Design
- Steam Cycle Conditions
- Environmental Controls and Performance
- Balance of Plant
- Economic Assumptions and Methodology

Computational Platform

UniSim Design Suite R390, integrated with
- Brian Research & Engineering ProMax® software for PCC parametric optimization
- BASE’s proprietary package for rigorous solvent performance predictions
Linde-BASF PCC Plant Design for 550 MWe PC Power Plant

- Single train PCC design for ~13,000 TPD CO₂ capture
- 40-50% reduced plot area to 180m x 120 m
Comparative PCC Performance Results
Linde-BASF vs Reference DOE/NETL Case*

Energy demand for different PCC plants

<table>
<thead>
<tr>
<th>Specific energy demand elements</th>
<th>NETL-MEA</th>
<th>Linde-BASF PCC (LB-1)</th>
<th>Linde-BASF PCC (LB-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reboiler Duty</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Cooling Duty</td>
<td>70%</td>
<td>70%</td>
<td>70%</td>
</tr>
<tr>
<td>Electrical Power</td>
<td>40%</td>
<td>40%</td>
<td>40%</td>
</tr>
</tbody>
</table>

Effect of PCC technology improvements on incremental energy requirement for power plant with CO2 capture and compression

Incremental fuel requirement for CO2 capture and compression

<table>
<thead>
<tr>
<th>NETL-MEA</th>
<th>Linde-BASF PCC (LB-1)</th>
<th>Linde-BASF PCC (LB-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>60%</td>
<td>40%</td>
</tr>
</tbody>
</table>

*Reference Case # 10 of DOE-NETL 2007/1281 Report
Total PCC Plant Cost

Significantly reduced total PCC plant Cost relative to DOE/NETL 2007 Reference Case #10 due to:

1. Reduced coal combustion (CO2 production) for 11.1% (LB-1) or 15.2% (LB-2)
2. Single train PCC design
3. Optimized PCC plant design
Power plant efficiency improvements and LCOE reductions with Linde-BASF PCC technology

Incremental improvements in power plant efficiency from MEA based PCC to LINDE-BASF LB-2 Option

- NETL - MEA: 24.9%
- Advanced Solvent: 1.76%
- PCC Optimization (LB-1): 1.39%
- Heat and Power Integration (LB-2): 1.35%
- LINDE-BASF (LB-2): 29.4%

Incremental Reductions in Levelized Cost Of Electricity from MEA based PCC to LINDE-BASF LB-2 Option

- NETL - MEA: $119.6
- Advanced Solvent: $5.5
- Process Enhancements: $5.1
- PCC Optimization (LB-1): $5.5
- Heat and Power Integration (LB-2): $2.3
- LINDE-BASF: $101.2

Detailed Engineering Model of Pilot Plant

- Free-standing absorber and stripper
- Equipment modules containing pumps, blower, HX etc

Pilot plant located in NCCC site with the existing 0.5 MWe pilot and piperack in the background
Summary and Next Steps

- Linde and project partners are designing and building a 1 MWe post-combustion capture pilot plant to be installed and tested at the National Carbon Capture Center in Wilsonville, AL.
- The plant will incorporate BASF’s OASE® blue solvent technology and Linde-BASF process enhancements and demonstrate that target performance can be achieved.
- Techno-economic assessment on a 550 MWe coal-fired power plant has confirmed the significant energy and capex savings compared to a reference MEA PCC plant, thereby, driving down the levelized cost of electricity.
- Critical next steps for the project:
 - Complete detailed engineering of the pilot plant and firm cost estimates and reach “Go” decision to proceed pilot plant procurement and build (Budget Period 1)
 - Procure, fabricate and install pilot plant at the NCCC and achieve mechanical completion (Budget Period 2)
 - Perform parametric and long duration tests and confirm achievement of target performance. (Budget Period 3)
Acknowledgement and Disclaimer

Acknowledgement: This presentation is based on work supported by the Department of Energy under Award Number DE-FE0007453.

Disclaimer: “This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.”
Thank you for your attention!

Project DE-FE0007453
2012 NETL CO$_2$ Capture Technology Meeting
Krish R. Krishnamurthy, Linde LLC
July 9-12, 2012
Pittsburgh, PA