Achieving a 10,000 GPU Permeance for Post-Combustion Carbon Capture with Gelled Ionic Liquid-Based Membranes

Kathryn A. Berchtold,1 Richard D. Noble,2 Douglas L. Gin,3 Rajinder P. Singh1, Victor A. Kusuma1, Cynthia F. Welch1, Will McDaniel2, Phuc Tien Nguyen2, Matt Cowan2, Trevor Carlisle2, Garret Nicodemus2, A. Lee Miller2 and Abhijit Bhown3

1Los Alamos National Laboratory, University of Colorado - Boulder, 2Electric Power Research Institute

Motivation
- Current technologies fall substantially short of DOE targets
- 2020 DOE NETL Sequestration Program post-combustion capture goal 90% capture with less than a 3% increase in COE
- Industry/DOE benchmark technology for capture of CO2
- Amino Absorption
- Paracitic low: 90% CO2 capture from gas will require approximately 22-30% of the produced plant power
- Estimated CO2 capture cost using membranes* is substantially
- Industry/DOE benchmark technology for capture of CO2

Membrane Selective Layer Design Synthesis & Evaluation
- Room-Temperature Ionic Liquids (RTILs)
- Compounds entirely consisting of ions resembling the ionic melts of metallic salts
- Liquids at ambient temperature and over a broad temperature range from -96 to 300 °C
- Negligible vapor pressure
- Beneficial properties: high solubility/perm selectivity for CO2, low flammability, excellent chemical stability
- Easily tailored for specific properties by manipulating salting functional groups
- Lack mechanical stability necessary for industrial utilization as thin film gas separation membranes

- Gel-RTILs
- Formed by incorporating low molecular weight organic gelators (LMOGs) into RTILs
- Physical gelation: H-bonding, van der Waals interactions, π-π stacking between LMOG and RTIL
- Gel-RTIL maintains CO2 affinity and permeability characteristics of RTILs
- Low fraction of LMOG required, typically 1-5 mol%
- Free RTIL provides for fast liquid-like diffusion and enhanced flux
- Increase in mechanical and thermal properties of RTIL upon gelation
- Demonstrated high perm-selectivity for CO2 over other components (coal-fired power plant exhaust gas

Objectives & Approach
- Design mechanically and chemically robust room temperature ionic liquid (RTIL)-based selective layers (SLs)
- Evaluate tailored gel-RTILs, RTIL-Poly(RTIL) composites, incorporation of task-specific CO2 complexation chemistry
- CO2 permeability exceeding 1000 barrer
- CO2/N2 selectivity of at least 20
- Develop ultrasonic spray coating technology (USCT)
- Commercially viable development of USCT which enables
- Achieving a 10,000 GPU Permeance for Post-Combustion Carbon Capture with

Membrane Opportunities
- Estimated CO2 capture using membrane** is substantially
- Advantages of membrane-based separations over other separations technologies
- Smaller footprints, smarter operation, better scalability & modularity
- Membrane performance scales linearly with permeance
- Less than $10/t CO2 captured at 10,000 GPU (extrapolated)

- Existing membrane materials have limited selectivity, productivity, chemical resistance, & mechanical durability
- Compelling need for new materials and processing methods to enhance productivity and selectivity

Program Goal Achievement: Improved Materials/Processes
- Development of RTIL-based selective layer materials with:
 - improved CO2 permeability (P > 1000 barrer),
 - improved selectivity in flue gas environments; &

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned or proprietary rights of other parties. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.