Bench-Scale Silicone Process for Low-Cost CO₂ Capture

GE Global Research
GE Energy
Milliken/SiVance

Benjamin Wood

DOE Contract: DE-FE0007502

2012 NETL CO₂ Capture Technology Meeting
July 10, 2012
Overview

27 Month, $3.75M Program to Develop a Silicone Process for CO₂ Capture

Program Objective: Design and optimize a new process for novel silicone CO₂ capture solvent and establish scalability and potential for commercialization of post-combustion capture of CO₂ from coal-fired power plants. A primary outcome will be a system capable of 90% capture efficiency with less than 35% increase in the cost of energy services (COE).

Technical Approach
- Design and construct bench-scale unit and obtain parametric data to determine key scale-up parameters
- Perform an EH&S and technical and economic assessment to determine feasibility of commercial scale operation
- Develop material manufacturing plan
- Develop scale-up strategy

Outcomes
- Strategy for future scale-up
- Technical and economic feasibility determined
- Environmental assessment

Anticipated Benefits of the Proposed Technology
- 90% CO₂ capture with <35% COE increase

• Continuation of previous DOE/NETL funded project (DE-NT0005310)
• Current project has 2 phases
 - Phase 1: 10/1/2011 to 12/31/2012
 - Phase 2: 1/1/2013 to 12/31/2013
Absorbent

GAP-0 (Liquid)

\[
\begin{align*}
&\text{H}_2\text{N} - \text{Si} - \text{O} - \text{Si} - \text{Me} - \text{Me} - \text{Me} - \text{Me} - \text{Me} - \text{NH}_2 \\
\end{align*}
\]

\(\xrightarrow{\text{CO}_2} \)

\[
\begin{align*}
&\text{H}_2\text{N} - \text{Si} - \text{O} - \text{Si} - \text{Me} - \text{Me} - \text{Me} - \text{Me} - \text{Me} - \text{O} - \text{H} \\
\end{align*}
\]

\(\Delta \text{-CO}_2 \)

\[
\begin{align*}
&\text{H}_2\text{N} - \text{Si} - \text{O} - \text{Si} - \text{Me} - \text{Me} - \text{Me} - \text{Me} - \text{Me} - \text{N} - \text{H} \\
\end{align*}
\]

GAP-0 Carbamate (Solid)

\[
\begin{align*}
&\text{\text{NO}_3} \text{Si} \text{Me} \text{Me} \text{O} \text{Si} \text{Me} \text{Me} \text{Me} \text{Me} \text{Me} \text{N} \text{H}_2 \\
\end{align*}
\]

\[
\begin{align*}
&\text{\text{NO}_3} \text{Si} \text{Me} \text{Me} \text{O} \text{Si} \text{Me} \text{Me} \text{Me} \text{Me} \text{Me} \text{N} \text{H}_2 \\
\end{align*}
\]

GAP-0 Carbamate (Solid)

GAP-0 Carbamate (Solid)

- GAP-0 demonstrates 17.7% wt gain of CO\(_2\) (10.2% wt gain for 30% MEA/H\(_2\)O)
- Co-solvent required to inhibit solidification (50 wt% triethylene glycol, TEG)
- Even in a 50/50 (wt/wt) mixture of GAP-0/TEG, eventually carbamate precipitates

GAP-1\(_m\) Absorbent Composition

- 40\% GAP-0
- 33\% GAP-1
- 19\% GAP-2
- 8\% GAP-3

GAP-1 (Liquid)

\[
\begin{align*}
&\text{H}_2\text{N} - \text{Si} - \text{O} - \text{Si} - \text{Me} - \text{Me} - \text{Me} - \text{Me} - \text{Me} - \text{NH}_2 \\
\end{align*}
\]

\(\xrightarrow{\text{CO}_2} \)

\[
\begin{align*}
&\text{H}_2\text{N} - \text{Si} - \text{O} - \text{Si} - \text{Me} - \text{Me} - \text{Me} - \text{Me} - \text{Me} - \text{O} - \text{H} \\
\end{align*}
\]

\(\Delta \text{-CO}_2 \)

GAP-1 Carbamate (Solid)

\[
\begin{align*}
&\text{\text{NO}_3} \text{Si} \text{Me} \text{Me} \text{O} \text{Si} \text{Me} \text{Me} \text{Me} \text{Me} \text{Me} \text{N} \\
\end{align*}
\]

Carbamate does not precipitate in a 60/40 (wt/wt) GAP-1\(_m\)/TEG mixture
Vapor Pressure

All aminosilicone materials tested exhibited vapor pressures < MEA

Lower absorbent vapor pressure simplifies CO$_2$ desorption process
Thermal Stability Measured by GC

- Thermal stability of GAP materials is high
- Carbamate materials have lower thermal stability
 - GAP-0 converts to higher MW GAP materials
 - Have discovered additives that greatly improve thermal stability
Isotherms

The maximum possible working CO$_2$ capacity can be determined.
Heat of Absorption of CO$_2$

Conditions:
- $T = 40 \, ^\circ C$
- 14 doses of 20 SCC CO$_2$
- Magnetically stirred

Heat of absorption (kJ/kg CO$_2$)

- 1887 kJ/kg CO$_2$
- 2263 kJ/kg CO$_2$

Error bars - 95% CI
Lab-Scale Schematic

Packed Absorption Column

Column
- 50 mm I.D.
- Packing height = 1.3 m
- 5 x 5 mm Raschig rings
- 2.5 L of packing

Rich Absorbant

Rich-Absorbent Reservoir

High-Pressure Pump

High-Pressure Desorption Vessel
- 500 ml

CO₂

Lean-Absorbent

Back-Pressure Regulator

Mass Flow Meter

Vent

Mass Flow Meter

Multi-Channel MS

Stripped Flue Gas

Low-Pressure Pump

Lean-Absorbent Reservoir

Throttling Valve

Mass Flow Meter

Vent
Lab-Scale System

- Successfully ran numerous multi-hour experiments where solvent was cycled continuously between the absorber and desorber
- Was able to achieve >90% CO₂ capture
Energy Penalty

- ASPEN Plus model built for CO$_2$ separation using GAP-1/TEG; Updated with experimental results
- GAP-1/TEG energy penalty for the overall system ~24% vs. ~30% for MEA
Bench-Scale Schematic

Flow Chart:

- **Flue Gas Generation**
 - 100 L/min (STP)
 - 40°C
- **Gas Preheater**
 - 1 L/min
 - 10 bar
- **Absorption Column**
- **Scrubbed Exhaust**
 - Pump
 - 84 L/min (STP)
 - 40°C
- **Cooling Water**
 - 1 L/min
 - 1 bar
- **Solvent In**
- **Solvent Out**
 - 1 L/min
 - 10 bar
- **Preheater**
 - CO₂
- **High Pressure Desorber**
 - 160°C
 - 10 bar
- **Gas Analyzer**
 - Vent
 - 16 L/min (STP)
Acknowledgment: This material is based upon work supported by the Department of Energy under Award Number DE-FE0007502.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.