Evaluation of Solid Sorbents as a Retrofit Technology for CO$_2$ Capture

Project Update: July 10, 2012

ADA Environmental Solutions creates and delivers cutting edge technical and chemical solutions to reduce emissions from coal-fired power plants, Portland cement kilns and industrial boilers, helping customers meet environmental goals while balancing their business needs.
Presentation Outline

• Background
 – Participants
 – Project Goals
 – Project Overview

• 1 MW Pilot
 – Sorbent Characteristics
 – Contactor Design Selection
 – Host Site Information
 – Project Accomplishments
 – Future Plans

This information is provided “AS-IS” without warranty of any kind, and is subject to change without notice. Reproduction or use without the express written authority of ADA-ES, Inc., is strictly prohibited. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
ADA CO₂ Capture Program

• Phase I – Viability Assessment
 – Cooperative Agreement: DE-NT0005649
 • Dual Focus: Sorbents & Process
 • 1 kWₑ Test Device
• Phase II – FEED & Pilot Testing
 – Cooperative Agreement: DE-FE0004343
 • Sorbent Selection & Reactor Design
 • Full-Scale Conceptual Design
 • 1 MWₑ Pilot Unit
 • Techno-Economic Assessment
• Phase III (Demonstration)
 – Full-Scale Preliminary Design
 – Validate Design (>25 MWₑ)
Project Goals

The overall objective of this funding stage is to validate solid sorbent-based post combustion CO₂ capture through slipstream pilot testing.

Project Goals:
- Achieve 90% CO₂ Capture
- LCOE increase less than <35%
- Generate a high purity CO₂ stream
- Successfully scale sorbents

Federal Funding provided by the DOE National Energy Technology Laboratory’s Innovations for Existing Plants Program
Project Objectives

- Reduction in energy penalty and costs associated with post-combustion CO₂ capture
- Reduction in overall environmental impacts versus other CO₂ capture options
- Reliable operation
- Applicable to retrofit and new builds
- Period of Performance:
 - October 1, 2010 – December 31, 2014
Project Participants

• DOE – NETL
 o Project Sponsor
• ADA-ES, Inc.
 o Project Management
 o Sorbent Evaluation & Selection
 o Conceptual Process Design
 o Techno-Economic Assessment
• Shaw Energy & Chemicals, Inc.
 o Detailed Engineering Services
 o Significant Experience with Fluidized Bed Reactor Design
 o Isothermal and Adiabatic Reactors
 o Single & Multibed Reactors
• Stantec Consulting Ltd.
 o Cost Analysis
 o Plant Integration
 o Owners Engineer Perspective
• EPRI
 o Industry Cost Share
 o Independent Performance Evaluation and Techno-Economic Assessment
• Southern Company
 o Host Site
 o Cost Share
• Luminant
 o Cost Share
Project Budget Period Overview

Phase I: 18 months
- Refine 500 MW Conceptual Design and Sorbent Selection
- Design 1 MW pilot
- Scale down to 1 MW

Phase II: 18 months
- Manufacture and Construction
 - Manufacture Sorbents
 - Fabricate and Install 1 MW pilot

Demonstration Phase
- 1 MW Testing
- Develop 500 MW Preliminary Design
- Conduct Techno-economic analysis

Phase III: 15 months
Potential Benefits of Solid Sorbents

• Energy Penalty
 o Sensible heat requirement is less – although heat recovery should be considered
 o Latent heat of evaporation
• Corrosion
 o Less expensive materials of construction
 o No corrosion inhibitors required
• Air
 o Reduced emissions of amines
• Water
 o Less cooling water required
 o Minimal liquid waste
• Process Flexibility and Operability
 o Can be applied to cycling plant “load following”
 o No risk of foaming or other solvent-related challenges
Sorbent Properties
Sorbent Selection

• Selection Criteria
 o Kinetics
 o Higher working CO₂ delta loading
 o Stability
 o Part of a commercial process
 o Experience with changing particle size
 o Potential regeneration after the formation of heat stable salts

• 1MW Pilot Capacity
 o Approximately 5 tons (dry basis) required for operation
 o Batches will have same specifications
 o QC checks through lab scale testing
Sorbent Kinetics

Temperature change from 50 °C to 40 °C

Graph showing the change in CO₂ and H₂O loading with time for CO₂ and H₂O.

- CO₂ Loading (g CO₂/100 g sorbent)
- H₂O Loading (g H₂O/100 g sorbent)
- Time (min)
1 MW Pilot Design
Design Considerations

- Capital costs
- Gas/solids contacting
- Heat transfer
- Sorbent attrition
- Pressure drop
- Maintenance requirements
- Footprint
Designs Considered

Comparison

- **Similar**
 - Capital costs
 - Footprint
- **Advantage TDR**
 - Pressure drop
 - Attrition
- **Advantage SFB**
 - Gas/solids contacting
 - Heat transfer
 - Commercial design
Fluidization Characterization

- **Variables**
 - Sorbent particle size
 - Gas velocity: (1-5 ft/s)

- **Measurements**
 - Fluidization regime
 - Pressure drop (average and fluctuations)
 - Heat transfer coefficient
 - Entrainment rate

- **Results**
 - Optimized particle size distribution
 - Bed density: 15-30 lb/ft³
 - Heat transfer coefficient: 65-105 Btu/hr·ft²·F
 - Entrainment flux: provided operation limits
Mechanical Attrition Test Results

- Temperature (T): Ambient
- Gas: Nitrogen
- Ugs: 300 ft/s
- Test Duration: 2-hrs

The graph shows the percentage size (% Size) against % Undersize with dp (µm) on the x-axis. The data points represent the initial and after conditions of the sorbent beads.
Principal

- Flue gas passes through Adsorber module where sorbent particle adsorbs CO₂.
- Regenerable solid sorbent cycles between Adsorber and Regenerator. Raising the temperature of the sorbent releases CO₂.

Next Steps: Heat Integration & Optimization
Host Site

- **Host Site:** Southern Company – Alabama Power Co. Plant Miller
 - 4 EGUs (~2,640 MW_e)
 - Flagship Plant
 - PRB Coal
 - WFGD
 - Pilot Located near WFGD on Unit 1
1 MW Pilot Location
1 MW Pilot Project Schedule

<table>
<thead>
<tr>
<th>Milestone Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start site work for 1 MW pilot</td>
<td>4Q12</td>
</tr>
<tr>
<td>Substantial completion of mechanical installation SOW</td>
<td>3Q13</td>
</tr>
<tr>
<td>Substantial completion of electrical SOW</td>
<td>4Q13</td>
</tr>
<tr>
<td>Demonstrate pilot operation</td>
<td>1Q14</td>
</tr>
<tr>
<td>Begin continuous performance testing</td>
<td>1Q14</td>
</tr>
<tr>
<td>Complete field testing</td>
<td>2Q14</td>
</tr>
</tbody>
</table>
Budget Period 2 Scope

- Procure and Manufacture Sorbents
- Procure and Fabricate Pilot-Scale Equipment
 - Procure Pilot Scale Equipment
 - Finalize Fabrication and Construction Work Packages
 - Equipment and Module Fabrication
- Installation and Startup
 - Host-site Preparation
 - Mechanical Installation
 - Electrical Installation
 - Commissioning/Startup Activities
Budget Period 3 Scope

- Pilot Scale Operation and Evaluation
 - Parametric Testing
 - 60 Day Continuous Performance Test
- Define and Collect Compression and Sequestration Information
- Prepare Commercial Design Specifications
 - Refine Full-Scale Design Specifications
 - Full-Scale Conceptual Engineering Design
 - Conduct Full-Scale System Economic Evaluation
 - Heat Recovery Information
Creating a Future with Cleaner Coal

ADA-ES, Inc.
9135 S. Ridgeline Blvd.
Suite 200
Highlands Ranch, CO 80129
(303) 734-1727
www.adaes.com

Principal Investigator: Sharon Sjostrom
sharon.sjostrom@adaes.com

Project Director: Travis Starns
travis.starns@adaes.com

Scientific Advisor: Holly Krutka
holly.krutka@adaes.com

Project Engineering Manager: Marty Dillon
martin.dillon@adaes.com