Viscous Glass Sealants for Solid Oxide Fuel Cells

Scott Misture and James Shelby, co-Pls

Alfred University Alfred, NY

DOE Project Manager: Dr. Joseph M. Stoffa

Contract Number: NT0005177

SECA Meeting, 2012

Overview of Results

- 1. Non-alkali boro-gallio-silicates seal between 750 and 850 °C
 - Possible OT around 750 °C
 - 2. Retain a large fraction of remnant glass at 750 °C for viscous flow
- 2. Low alkali boro-gallio-silicates seal between 650 and 850 °C
 - 1. Possible OT from 650 °C to 850 °C
- 3. Boro-germano-silicates seal between 650 and 850 °C
 - 1. Best thermomechanical match with SOFC stack components
- 4. New glasses from remnant glasses in (2) do not bulk crystallize

Overall Strategies for Viscous Sealants

- Fully amorphous No crystallization on heating or cooling
- Fully amorphous at operating temperature Any crystals formed on cooling melt during heating
- Partially amorphous at operating temperature Remnant glass phase allows flow

Crystals may reduce mass transport through the glass & prevent degradation over time

Crystals may improve mechanical behavior

Overall Glass Composition Strategy

Maintain a high concentration of glass former

- a) achieve controlled viscosity behavior
- b) minimize crystallization

Vitreous network

- Controlled viscosity

<u>Inverted structure</u>

- Fragile viscosity
- Crystallization

Overview of "viscous" - softening and viscosity

Overall Logic: Chemical Substitutions to Reduce Tg and Td Entirely New Glass Compositional Series

- Use of Ga₂O₃ instead of Al₂O₃
 - Ga ions lower Tg compared to identical Al-containing glasses
- Use of GeO₂ for SiO₂: GeO₂ exhibits properties similar to B₂O₃
 - higher CTE, lower Tm than SiO₂,
 - greater chemical durability than borate glasses
 - allows lower Tg
- Use combined Ga₂O₃ or GeO₂ with B₂O₃
 - Lower viscosity with lower alkali

In all cases consider alkaline earths to reduce alkali

Initial Search for Appropriate Glass Compositions

CTE values near 10 – 12 ppm/K Alkali content 20 mol% or lower

High Temperature Glasses

High SiO_2 content 590 < Tg < 770 C

-Flow at 850 C ranges from roofing cement to barely softening

Primary parameters to optimize:

- Viscosity
- ➤ Alkali content
- Crystallization

Low Temperature Glasses

High GeO_2 , B_2O_3 , or P_2O_5 content 514 < Tg < 590 C -excellent flow < 850 C

Primary parameters to optimize:

- Volatility
- > Alkali content
- Crystallization

Study both in parallel paths

Glass Composition Development

Alkali GeO₂ SiO₂

Excellent flow behavior, low Tg, no crystallization, BUT risk of forming Ge colloids in H₂ atmosphere

B₂O₃ additions

Substitute alkaline earth for alkali

Ga₂O₃ additions

Tg: 540 – 590 C

Strong viscosity behavior

Substitute alkaline earth for alkali

Sealing <900 C

Substitute B₂O₃ for remaining alkali

Small additions of alkali

Tg: 610 – 690 C

GallioSilicate Compositional Modifications

- 3rd and 4th stage of compositional adjustment
- Modification toward non-alkali glasses

Glass	Alkali	B_2O_3	Tg	CTE (ppm/K)	Tseal
Series	(mol %)	(mol %)	(C)	(100-400 C)	(C)
High Temp	20	<10	590 - 770	9 - 12	> 950
GaSi	10	<10	640 - 650	9 - 10	≈ 900
GaBA	5	<10	610 - 630	7 - 10	≈ 850
GaSiB	0	<10	650 - 670	8 - 10	≈ 7 50

Encouraging results:

- T_{seal} decreases with decreasing alkali content
- Tg approaches 600 C with only 5 mol% alkali

GaBA and GaSiB series show the appropriate Tseal range

Additions of Boron to Improve Flow Behavior

Hot Stage Microscopy:

Press <50 µm glass powder into 3 mm pellet

GaSi glass: no significant flow before 850 C

GaSiB glass: significant flow before 850 C

Achieved improved flow with non-alkali GaSiB glasses

Test Seals: Stainless Steel vs. 8YSZ

Glass samples are sandwiched between 8YSZ and Al-SS

8YSZ Generally Inhibits Interfacial Crystallization

Low alkali boro-gallio-silicates on 8YSZ at 850 C in air

Amorphous interface with 8YSZ up to 1500h

Glass composition determines crystallization

Microprobe maps of glass-8YSZ interface after 1500h at 850 C

Reaction zone into YSZ along interface

Alfred University

Kazuo Inamori School of Engine

8YSZ Generally Inhibits Crystallization – some glasses develop Sr zirconate crystals at YSZ interface

500h 1000h 1500h

(a) 100 μm (c) 100 μm

Low alkali boro-gallio-silicates on 8YSZ at 850 C in air

Partially crystallized interface with 8YSZ after 1000h –
 DIFFERENT CRYSTALS THAN BULK

<u>Interfacial reaction yields Sr zirconate crystals – 1500h</u>

Interfacial crystallization at the 8YSZ interface after 1500h at 850 C

Interfacial crystals: SrZrO₃

Alfred University

Kazuo Inamori School of Enginee

Alkali Boro-Gallio-Silicate (GaBA) Glasses – With YSZ in Dry Hydrogen

Glass powder mixed with 8-YSZ powder Thermally treated for 100 hrs at 850 C

Alkali Boro-Gallio-Silicate (GaSiB) Glasses – With YSZ in Dry 4% Hydrogen

Glass powder mixed with 8-YSZ powder Thermally treated for 100 hrs at 750 C

<u>See partial phase change in YSZ powder – clear evidence of the preferential dissolution of Y ions</u>

- •Glass powder mixed with 8-YSZ powder
- •Thermally treated for 100 hrs in both air and 4% hydrogen

GaBA Glasses- No effect of glass powder particle size

- •Frit (<53 μm) and powder (<220 μm) samples on Al coated stainless steel
- Crystallization for 100 hrs at 850 C
- •High thermal stability of with large glassy content

GaBA1 100 hrs

GaSiB Glasses – No Effect of Glass Powder Particle Size

- •Frit (<53 μm) and powder (<220 μm) samples on Al coated 441 stainless steel
- •Extensive crystallization after 100 hrs at 850 C
- •High thermal stability of microstructure, yet little remnant glass phase

GaBA5 100 hrs

GaSiB Glasses with Aluminized Stainless Steel

Interface of a GaBSi2 glass with Al-441SS substrate after 500h at 850 C

- 1. alumina coating remains after 500h
- 2. coating impedes diffusion of chromium and iron

Generally Find Crystallization at the Al₂O₃ Interface

Interfacial crystallization of a GaBSi2 glass with Al-441SS substrate after 500h at 850 C

Crystals are KSrSiO₆

GaSiB Glasses – No qualitative changes in Reactivity and Stability in Dry 4% Hydrogen

Interfaces bonding with alumina coated 441 stainless steel
Thermal treated after 100 hrs at 750 C

Glasses Chemically Compatible with Spinel Coating

All samples tested with spinel coated SS fail in the spinel coating after 100 h test at OT

GaBa & GaSiB Stability over 500h in Air

500h at 850 C (GaBA glasses) and 750 C (GaSiB glasses)

No Effect of Alumina Coating over 500h in Air

Compatibility with protective Al_2O_3 coatings: 850 C (GaBA glasses) and 750 C (GaSiB glasses)

Again 8YSZ inhibits interfacial crystallization and zirconates from at the YSZ interface by 500h

Reactivity with 8YSZ: 500h 850 C (GaBA glasses) and 750 C (GaSiB glasses)

Weight loss of Glasses after 500 h of thermal treatment

Weight loss after 500 hrs at each temperature Weight loss all less than 1%, alkali-free glasses (GaSiB) even less

	Glass	Treatment	Weight Loss (%)
Low Alkali	GaBA1	850 C, 500h	0.69
	GaBA5	850 C, 500h	0.87
Alkali-free	GaSiB5	750 C, 500h	0.03
	GaSiB9	750 C, 500h	0.16

<u>Thermal Expansion Behavior – Significant Glass</u> <u>Fraction after 500 h with high CTE</u>

Before thermal treatment (from 100 - 400 C)

GaBA1, CTE = $9.7 \cdot 10^{-6} \text{ K}^{-1}$

GaSiB9, CTE = $8.3 \cdot 10^{-6} \text{ K}^{-1}$

Viscous Remnant Glass – Made in Pure Form

Remnant Glass Does NOT Crystallize Easily

850 C 500h: GaBA1 and R1 (the remnant glass based on GaBA1)

R1 Glass As melted

R1 Glass 850 C 500h

R1 glass lost 2.8% of weight after 850 C 500h, due to its high alkali and boron contents

Interface with YSZ same as for parent glass

850 C 500h: GaBA1 and R1 (the remnant glass based on GaBA1)

Very similar Sr zirconate crystals at the interface with 8YSZ

NO bulk crystallization

Some GaBA glasses may crystallize further during thermal cycles

After 100 h thermal treatment at OT, samples were cycled using heating and cooling rates of 5 K/min.

GaSiB Glasses – No Changes During Thermal Cycling

GaSiB5 with extensive crystal phase are stable during thermal cycles GaSiB9 shows increasing crystals

Sealing Test in SOFC Single Cell Test System Al-coated SS sealed to YSZ tube

Sealing Test with Thermal Cycling

- GaBA1 sealed with 8YSZ at 850 C: Can be cycled RT to OT without cracking
- Accommodate working pressures of 1.2 psi

GaBA1

Current-Year Summary

- Downselected glasses perform well under dry H₂ and with temperature cycling to 10 cycles.
- New viscous glass compositions based on remnant glass phase show no bulk crystallization but higher weight loss.

Ongoing Work

- Testing glasses under wet 100% H₂
- Additional chemical mapping
- Additional properties measurements of remnant glass compositions

Acknowledgments

- DOE NETL for providing funding for the research
 - Award Number DE-NT0005177
- Joe Stoffa and Briggs White for guidance throughout
- Jeff Stevenson at PNNL for providing coated stainless steel samples