

Electrodeposited Mn-Co Alloy Coating For SOFC Interconnects

H.A. McCrabb¹, B. Kagajwala¹ T.D. Hall¹, H. Zhang², X. Liu², S. Snyder¹ E.J. Taylor¹

¹Faraday Technology Inc., 315 Huls Dr., Clayton, OH 45315, USA

²West Virginia University, Dept. of Mechanical and Aerospace Eng.ESB, Morgantown, WV, 26506, USA

Overall Objective

Develop, optimize & validate an inexpensive manufacturing process for coating metallic SOFC interconnects with Co and Mn.

Introduction

Reducing SOFC operating temperatures below 1000 °C has permitted less resistive and expensive ferritic stainless steel interconnects to replace ceramic materials. However, even specially developed ferritic alloys operated at elevated temperatures for lengthy periods of time form a chromia scale that increases the interconnect resistance and results in chrome diffusion from the interconnect to the cathode that causes a reduction in cathode performance. One attractive method to resolve the chromia scale growth and diffusion issues is to electrodeposit a Mn-Co alloy coating onto the interconnect surface and subsequently convert it to a $(Mn,Co)_3O_4$ spinel.

Under funding from the Department of Energy, Faraday Technology and WVU are developing, optimizing and validating an electrodeposition process to apply high-quality coatings to SOFC interconnects in a mass production scenario. The FARADAYICSM Electrodeposition Process can be used to deposit a Mn-Co alloy with a controlled composition and thickness that can subsequently be converted to a spinel by thermal exposure at high temperatures in an oxidizing environment. Faraday has scaled its process capabilities from 25 cm² to 100 cm² SOFC interconnects and demonstrated the ability to coat interconnects containing gas flow field features. Continued analysis and refinement of the economic assessment based on using batch manufacturing for the pulse reverse electrodeposition process demonstrated that the innovative coating technology can meet DOE's high volume target of 1.6 million plates per annum for 250 MW fuel cell stacks at a cost of ~\$1.85 per 625 cm² coated interconnect.

Previous Accomplishments

Hull Cell Experiments to Determine Coating Composition Possibilities

Enables investigation into the effect of various parameters on deposit properties during a single experiment

- Current density
- Temperature
- Electrolyte composition
- Additives

12.7 cm

in coating

• Less microcracking

• Higher current efficiency

ion concentrations results suggested

• Potential for higher Mn content

Results

Process Scale-up from 25 cm² to 100 cm²

Challenges encountered during scale up from 25 cm² to 100 cm²

- •Anode fouling
- •Adhesion

•Process repeatability

Solution: Revisit plating electrolyte with NaC₆H₁₁O₇

Approach

29% Mn 41% Mn 32% Mn 16% Mn 22% Mn

Electrolyte without NaC₆H₁₁O₇

Coating Microstructure and Composition After 500 hour Thermal Exposure Distance (µm) 57%Co 7µm Mn, Co, Cr, Fe, O 500 KV:20 WD:15 1 Distance (um) 57%Co 10µm 57%Co 10µm An, Co, Cr, Fe, O

ASR at 800°C 200 hr 500 hr 100 hr $m\Omega \text{ cm}^2$ 3 μm 40% Co 35 57 49 32 7 μm 40% Co 62 7 10 µm 40% Co 22 36 3 μm 85% Co 31 75 20 54 40 7 μm 85% Co 59 37 23 22 10 µm 85% Co 3 μm 57% Co 34 26 7 μm 57% Co 12 --10 µm 57% Co 12 --Crystal Structure After 500 hour Thermal Exposure at 800°C

Mn₁₅Co₁₅O O MnCo₂O₄ ■ Mn₁ CrO₄ - 332 - 333 - 334 - 335 - 336 - 337 - 338 - 339 - 340

2 theta (degrees

 Improved coating adhesion in as-deposited selected for Phase I work on 5 cm x 5 DC cm T441 planar substrates because at • Coating deposition rate appears linear reasonable current densities and metal • Coating thickness doesn't decrease upon spinel conversion • Associated challenges • Can a high enough Mn content be obtained? • Can the microcracking issue be addressed? • Is the coating deposition rate acceptable? FE • Is the process repeatability improved? • Faster coating deposition rates mman month whethere 25 cm² 430 Stainless Steel Interconnect With Gas Flow Fields Top left of channel 3 channel serpentine pattern • Channel width ~ 0.9 mm • Rib width ~ 0.8 mm• Channel depth ~ 0.45 mm Bottom left of channel Bottom of channe Bottom right of channel

Economic Analysis

roughness. Mass transport control results in a

The FARADAYICSM Electrodeposition process...

- Enables alloy composition control
- Enables control of coating uniformity for flow field patterns
- Maintains fast processing times to enable high throughput manufacturing
- Is an inexpensive manufacturing process for SOFC interconnect coatings

Milestones			
Fiscal Year	Title	Planned Completion	Percent Complete
2011	1. Design/modification of 10" x 10" electrodeposition cell	May 2011	100%
2012	2. Long-term high temperature, thermal evaluation	August 2012	70%
2012	3. Process development for 4"x4" planar interconnects	May 2012	100%
2012	4. Process development for 4"x4" pattern interconnects	June 2012	10%
2012	5. Long-term on-cell performance evaluation	August 2012	10%
2012	6. Qualification/demonstration of IC in single cell test rig	September 2012	0%

Processing Equipment

Electrochemical Cell

Based upon Faraday's electrochemical cell design that facilitates uniform flow across the surface of a flat substrate (US patent #7,553,401)

Modified FARADAYICSM Electrodeposition Cell for coating patterned interconnect substrates ranging in size from 6.5 cm^2 to 625 cm^2

Current cost analysis of coating process based upon batch manufacturing of 1,600,000 plates per annum at a cost of ~\$1.85 per 625 cm² coated interconnect.

■ Plating Line ■ Water □ Labor □ Energy ■ Cobalt ■ Managnese ■ Boric Acid □ Ammonia Sulfate

Accomplishments/Future Work

FY 2012 Accomplishments

- Continued optimization of FARADAYICSM Electrodeposition Process parameters in order to optimize coating thickness, coating composition and coating adhesion
- Improved coating uniformity across T441 planar interconnects at the 100 cm² scale
- Demonstrated coating process for 25 cm² 430 stainless steel interconnect containing gas flow fields
- Continued refinement of economic analysis to assess economic viability of FARADAYICSM Electrodeposition Process for high volume batch manufacturing

Future Work

- Development, optimization and validation of the FARADAYICSM Electrodeposition Process for 100 cm² interconnects with gas flow field features
- Long-term on-cell performance evaluation of button cells
- Qualification/Demonstration of Interconnect Coating in Single Cell Test Rig under ideal SOFC operating conditions by potential commercial partners
- Continued development of a more comprehensive economic assessment of the electrodeposition coating process as it relates to interconnect manufacturing.

Acknowledgements

This material is based upon work supported by the Department of Energy under Grant No. DE-SC0001023 . Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the DOE.

Principal Investigator: Heather McCrabb, Company Name: Faraday Technology, Inc., Address: 315 Huls Drive, Clayton, OH 45315, Phone: 937-836-7749, E-mail: heathermccrabb@faradaytechnology.com, Company website: faradaytechnology.com