NATIONAL ENERGY TECHNOLOGY LABORATORY

Engineering Innovations and Degradation Modeling in SOFC Cathodes

Kirk Gerdes

DOE-NETL, Research Group Leader – Fuel Cells

Outline

NETL-RUA

- Description
- Engagement

Cathode Engineering

- Infiltration
- Microstructural Engineering

Cathode Degradation

- Degradation framework
- Constitutive (ORR, Microstructure, ab initio)
- Core (3D multi-physics, Cathode evolution)
- Additive (Aging effects, Secondary phases / breakdown)

NETL RUA

NETL-RUA

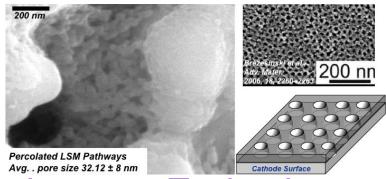
- Description
- Engagement

Cathode Engineering

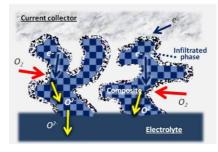
- Infiltration
- Microstructural Engineering

Cathode Degradation

- Degradation framework
- Constitutive (ORR, Microstructure, ab initio)
- Core (3D multi-physics, Cathode evolution)
- Additive (Aging effects, Secondary phases / breakdown)

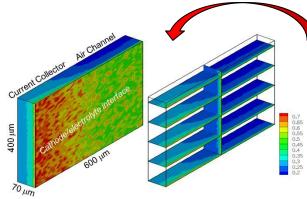

NETL RUA - Solid Oxide Fuel Cells

Support Industrial Development

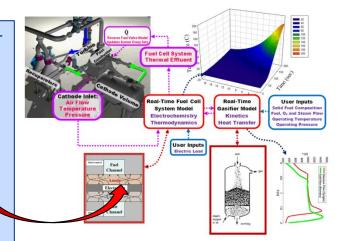


Operation of NETL Solid Oxide Fuel Cell Multi-Cell Array on direct, coal-derived synthesis gas at the National Carbon Capture Center at Wilsonville, AL in August/Sept 2009.

Collected 4,000 + cell-hours of data to support development of gas cleanup systems sufficient for gasifier / fuel cell integration.



Innovate Technology


Cathode infiltration technology is being developed to enhance the SOFC operating performance. Initial results have demonstrated > 40% performance improvement and acceptable material stability.

Evaluate Advanced Concepts

Fundamental computations (3D multiphysics model, at left) inform modeling of advanced degradation, performance, and microstructural evolution at the cell and stack level.

Integrated gasifier / fuel cell / turbine systems (IGFT, at right) support advanced fuel cell demonstrations efforts (2013+). NETL operates a system hardware evaluation and controls development platform.

NETL RUA FY12

WestVirginiaUniversity

Carnegie Mellon

Ismail Celik

Harry Finklea

Xingbo Liu

Ed Sabolsky

Xueyan Song

Paul Salvador

LongQing Chen

Yves Mantz

Rich Pineault

Harry Abernathy

Kirk Gerdes

Shiwoo Lee

Greg Hackett

Nick Siefert

Tom Kalapos

SECA core

SECA industrial teams

Cathode Engineering

NETL-RUA

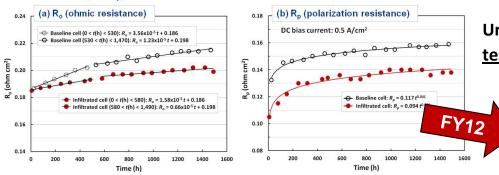
- Description
- Engagement

Cathode Engineering

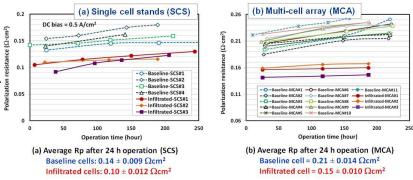
- Infiltration
- Microstructural Engineering

Cathode Degradation

- Degradation framework
- Constitutive (ORR, Microstructure, ab initio)
- Core (3D multi-physics, Cathode evolution)
- Additive (Aging effects, Secondary phases / breakdown)


NETL RUA – Cathode Engineering

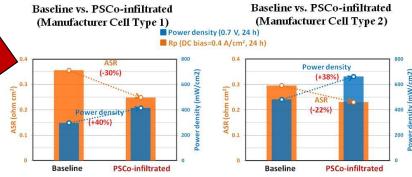
Infiltration concept



Long-term stability verification

> Variation of R_o and R_p of selected baseline cell and infiltrated cell for 1,500 h

Verified stability of electrochemical performance in 1500 hour test, cell degradation not accelerated above baseline > Polarization resistance vs. time of baseline cells and infiltrated cells



Short-term performance validation

Demonstrated statistically significant performance improvement for infiltrated cathodes in 200 hour tests > 30% peak power density increase (average) observed

Industry Engagement

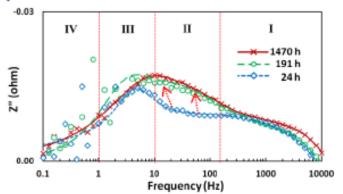
Unaltered industry cells + unmodified infiltrate: 200 hour tests > 38% power density increase @ 0.7 V (average)

Electrocatalytic Infiltration

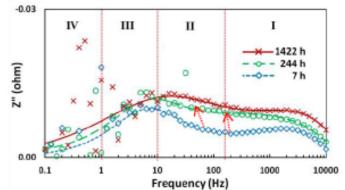
- Focus on La_{0.6}Sr_{0.4}CoO_{3-δ}
- Activity enhancement
 - > 30% power output @ 0.7 V
- Stability

No phase breakdown or interphase reaction

Durability

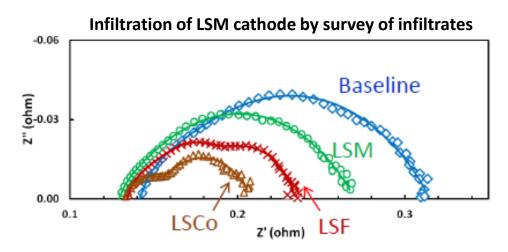

Equal or better than baseline @1500 hours

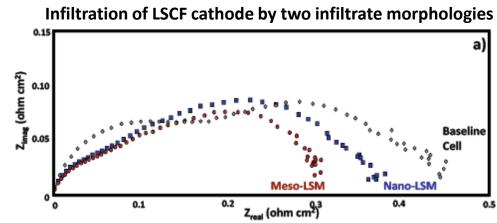
Cost / Scalability


Requires 6 wt% infiltrate (or less)
Formula compatible w/ commercial
cathode structures/materials

Cell degradation with operation time

(a) Baseline cell


(b) Infiltrated cell



Cathode Infiltration

- Improved infiltration process to minimize total number of infiltration steps
- Developed EISA process to increase infiltrate surface area (mesopores) and enhance thermal stability
- Evidence for role of structural relationships between infiltrate and backbone
 - LSM infiltrated by LSM (top)
 - LSCF infiltrated by two morphologies of LSM (bottom)

Cathode Infiltration

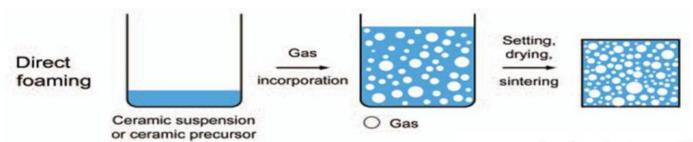
Prior accomplishments

Developed and demonstrated a functional infiltrate (LSC)

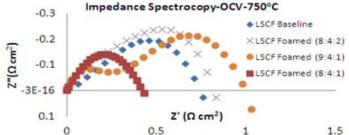
Recent progress

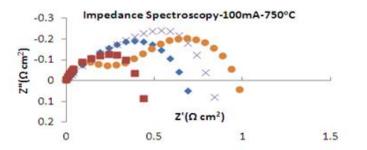
- Generated evidence of structure-dependent performance enhancements
- Examined the role of infiltrate wetting in fabrication and infiltrate function

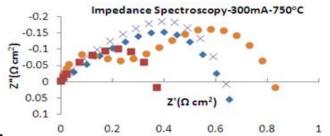
Continued research


 Examination of stability and improvements from infiltrates composed of doped and/or non-standard materials

Infiltration Publications


- 1. S. Lee, N. Miller, and K. Gerdes, J Electrochem Soc, Volume 159, Issue 7, pp. F301-F308 (2012)
- 2. R. Chao, R. Munprom, R. Petrova K. Gerdes, J.R. Kitchin, and P. A. Salvador, J Am Ceram Soc 96 (7) 2339-2346 (2012)
- 3. S. Lee, N. Miller, H. Abernathy, K. Gerdes, et al., J. Electrochem. Soc., Volume 158, Issue 6, pp. B735-B742 (2011)
- 4. S. Lee, N. Miller, M. Staruch, K. Gerdes, M. Jain, and A. Manivannan, Electrochemica Acta 56 (2011) 9904-09
- 5. S. Lee, N. Miller and A. Manivannan, ECS Trans., 35 (1) 2401-2407 (2011)
- 6. R. Chao, J. R. Kitchin, K. Gerdes, E. M. Sabolsky, and P. A. Salvador, ECS Transactions, 35 (1) 2387-2399 (2011)

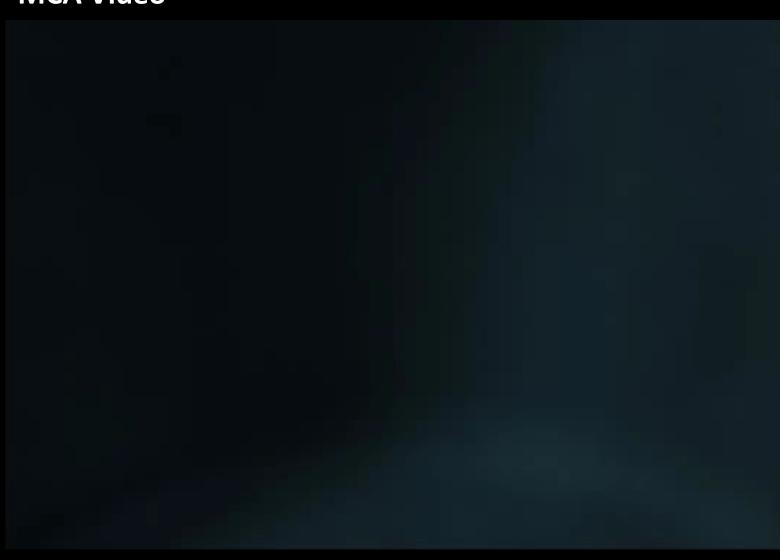



In-situ Foamed Cathode

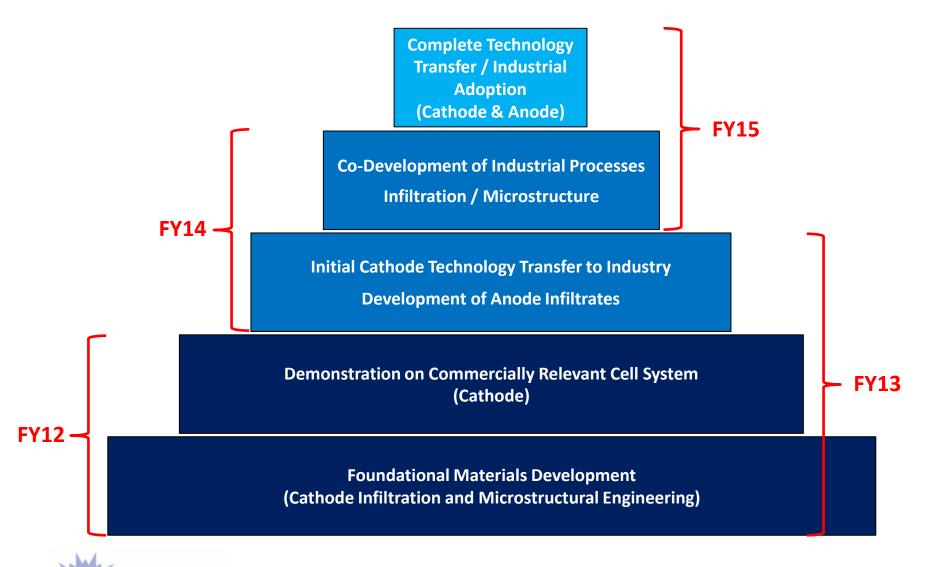
- In-situ foaming process
 - One-step, functionally graded cathode microstructure
 - Enhanced receptiveness to infiltration
- Electrolyte supported system development → anode supported
- Optimized formula decreases cathode polarization by > 50% over traditional microstructure

NATIC

FY12-FY13 Cathode Engineering


NETL RUA

- Increased engagements with SECA core
 - Argonne National Laboratory initiated
 - Georgia Institute of Technology executing
 - Additional partners arising from FY13 starts
- Increased engagements with industrial teams
 - Primary demonstrations on unmodified MSRI button cells
 - FY12 demonstration with SECA industrial partner cell
- Finalize cathode and extend effort to include anode
 - Anode catalytic enhancement, chemical resistance, durability



Cathode Materials Testing

MCA Video

Cathode/Electrode Engineering Beyond FY13

Cathode Degradation

NETL-RUA

- Description
- Engagement

Cathode Engineering

- Infiltration
- Microstructural Engineering

Cathode Degradation

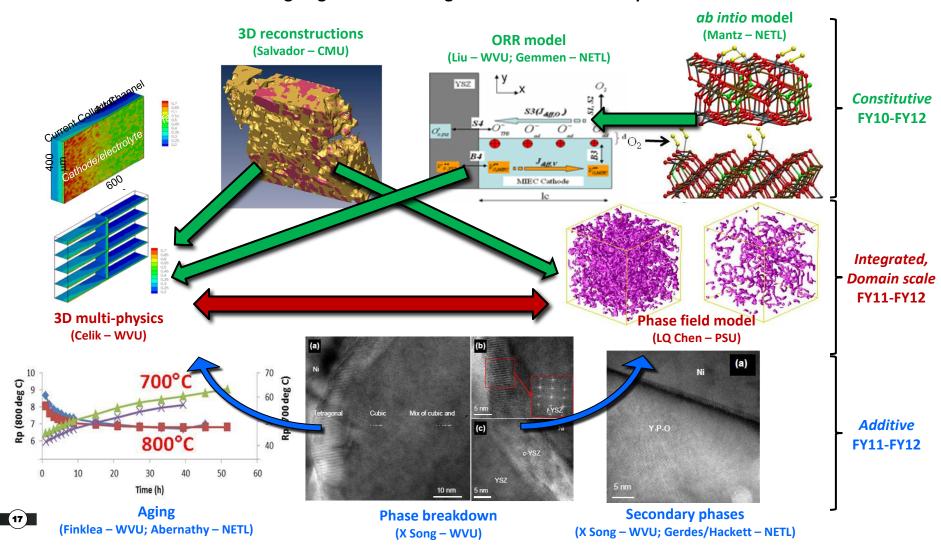
- Degradation framework
- Constitutive (ORR, Microstructure, ab initio)
- Core (3D multi-physics, Cathode evolution)
- Additive (Aging effects, Secondary phases / breakdown)
- Summary

Degradation framework

Degradation

- Topic too vast to cover in industrial report (as collection of relevant observations or description of applied heuristic approaches)
- Too many combinations of materials, too many operating states

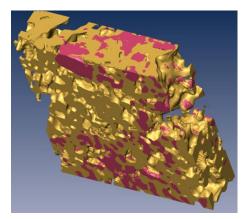
Framework organization


- Attempt to generalize/categorize degradation
- Provide a simple framework based on <u>degradation source</u> and <u>mechanistic complexity</u>
- <u>Intrinsic</u> v. <u>extrinsic</u>; and <u>primary</u> v. <u>secondary</u>

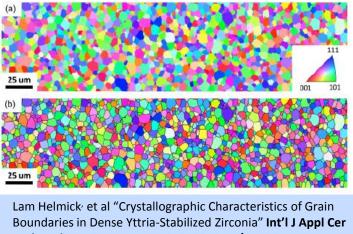
	Intrinsic	Extrinsic
Primary (direct or single step)	Best Engineering Practices	i) Best Engineering Practices ii) Operating Protocols
Secondary (indirect or multi-step)	i) Operating Protocols ii) Best Engineering Practices	Best Engineering Practices

NETL RUA – Degradation Modeling

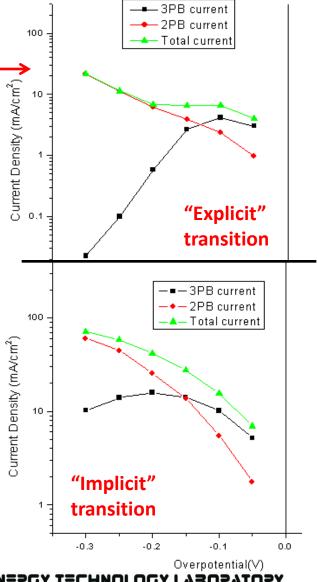
- Integrated modeling and experimental efforts to quantify degradation
- Model validation ongoing validation using literature and direct experimental sources



Constitutive Models and Reconstructions

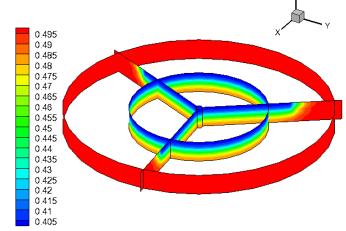

- Oxygen Reduction Reaction (ORR)
 - Treats parallel pathway (2PB v. 3PB)
 - Assumes surface potential separation

M.Gong, R. Gemmen, X. Liu, "Modeling of oxygen reduction mechanism for 3PB and 2PB pathways at solid oxide fuel cell cathode from multi-step charge transfer" Journal of Power Sources 201 (2012) 204-218


- ab initio simulations LSZ → LSM
- FIB-SEM reconstructions, FIB-OIM

False color FIB-SEM reconstruction of commercial LSM/YSZ/pore cathode

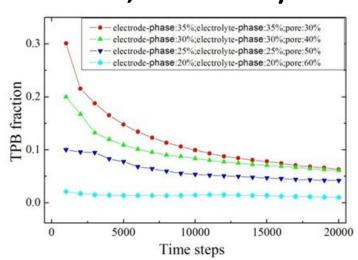
Tech, Volume 8, Issue 5, p 1218–28, Sept/Oct 2011



Integrated, domain scale models

3D multi-physics model (space domain, 10's cm)

- Powerful dynamic model predicts full 3D multiphysics (e.g. T, species, η, impedance response)
- Informed by ORR and full 3D reconstructions
- Validated by parametric analysis and comparison to independently published data


S. Pakalapati, I. Celik, H. Finklea, M. Gong, X. Liu, K. Gerdes, "Micro Scale Dynamic Modeling of LSM/YSZ Composite Cathodes" **submitted to Journal of Power Sources (2012)**

Microstructural evolution model (time domain, 1000's hrs)

- Describes evolution of 3-phase microstructure subject to thermodynamic and kinetic drivers
- Predicts geometric and topological parameters relevant to fuel cell reaction and transport

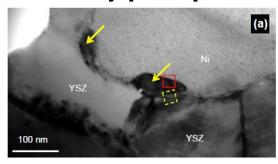
Q. Li, L. Liang, K. Gerdes, and L-Q Chen "Phase-field modeling of three-phase electrode microstructures in solid oxide fuel cells" **Appl. Phys. Lett. 101**, **033909 (2012)**; http://dx.doi.org/10.1063/1.4738230

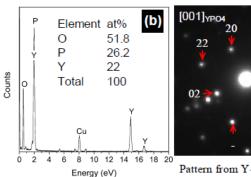
Additive degradation phenomena

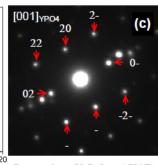
Cathode – Aging

- R_p of LSM symmetric cell held at OCV and cycled between 700°C and 800°C changes between two steady states requiring 10's hrs to acquire
- Believed attributable to cation diffusion

H. Abernathy, H.O. Finklea, D.S. Mebane, X. Chen, K. Gerdes, M.D. Salazar-Villalpando, "Reversible aging behavior of La_{0.8}Sr_{0.3}MnO₃ electrodes at open circuit" Journal of Power Sources 216 (2012) p11-14


Anode - Direct syngas exposure


- Direct syngas produces only minor secondary phases
- Degradation of seal and mechanical obstruction of pores

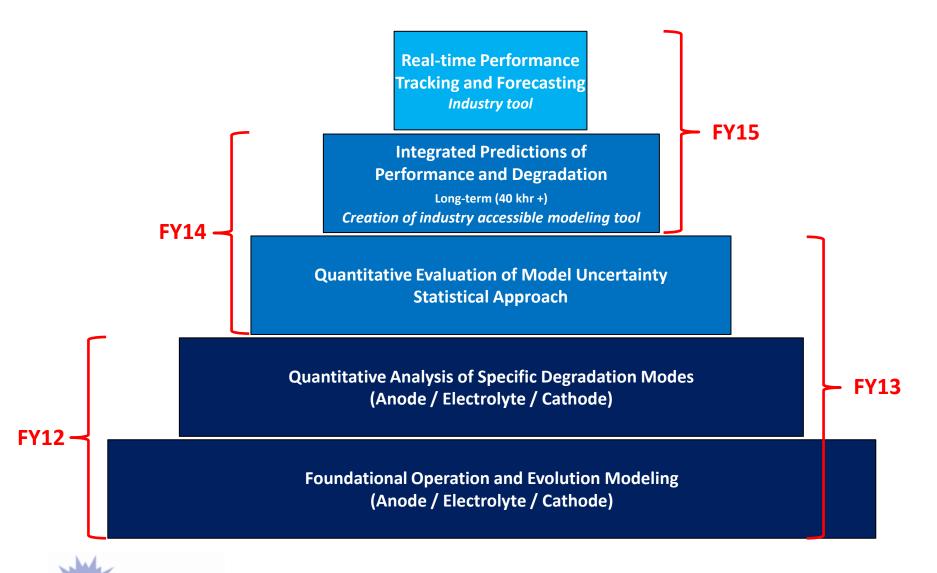

G. Hackett, K. Gerdes, X. Song, Y. Chen, V. Shutthanandan, M. Engelhard, Z. Zhu, S. Thevuthasan, R. Gemmen, "Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process" Journal of Power Sources 214 (2012) p142-52

Electrolyte - YSZ attack by phosphine

Stable Y-P-O phase is generated at electrolyte in PH₃exposed anode

Pattern from Y-P-O and YSZ

Y. Chen, S. Chen, G. Hackett, H. Finklea, J. Zondlo, I. Celik, X. Song, K. Gerdes, "Microstructure origin of electrochemical degradation of SOFC anodes operated in phosphine-containing fuels" submitted to Journal of Power Sources


FY12-FY13 Degradation Modeling

NETL RUA

- Increased engagements with SECA core
 - Argonne National Laboratory initiated
 - Boston University discussions
 - Additional partners arising from FY13 starts
- Initiate engagements with SECA industry teams
 - Information sharing and stack analysis
- Continue cathode and extend effort to include anode
 - Principal modes of degradation must be considered

Degradation Modeling Beyond FY13

Cathode Degradation

NETL-RUA

- Description
- Engagement

Cathode Engineering

- Infiltration
- Microstructural Engineering

Cathode Degradation

- Degradation framework
- Constitutive (ORR, Microstructure, ab initio)
- Core (3D multi-physics, Cathode evolution)
- Additive (Aging effects, Secondary phases / breakdown)

- NETL RUA has developed significant expertise and demonstrated maturity in two principal areas
 - Materials development, infiltration, and testing
 - Cell degradation modeling and testing
- NETL RUA supports industrial development
 - Direct R&D engagements with SECA industry teams
 - Analytical support and diagnostics
- NETL RUA collaborates with SECA core
 - Intensification of depth of understanding
 - Facilitate transfer of fundamental knowledge to applied cell development

Questions

• **DISCLAIMER:** Part of this report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.