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LG Fuel Cell Systems Inc. 

● A group of LG companies (Corp, Electronics, & Chemical) 
acquired 51% ownership of Rolls-Royce Fuel Cell Systems 
Inc. (June 2012) 

● The business focus remains on the commercialization of a 
“megawatt-scale” natural gas fueled fuel cell power system 
for stationary power generation 

● The business will have its primary activities in Canton, Ohio 
with continued support from the team in Derby, England 
and a new team of resources based in Seoul, Korea. 

● The business will leverage and benefit from expertise and 
capabilities from both LG Group and RR Group 
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● LG and R-R are investing in the next phase of the 

business aimed at the development and testing of an 

integrated-system demonstrator, then transitioning to a 

commercial business with products and services 

● A program of work has been planned which is aimed at 

designing, developing, and testing a prototype system in 

a “string-test”  

● The “string-test” fuel cell power system will… 

● be at a smaller scale than 1MW, but include a              

product architecture capable of „scaling‟ to ~1MW 

● Gas in to Grid Power out 

● New Co-CEO alongside Mark Fleiner: 

● Dr In Jae Chung 

LG Fuel Cell Systems Inc. 



 

 

LG data        

4 

Outline 

● System Relevant Block-Scale Testing  

● Cell Technology Status:   

● Long-term durability 

● Degradation mechanisms and electrode 

optimization 

● Reliability Methodology 
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5 Plant Configurations Similar for NG and IGFC 

● Block metric testing matches 
full system cycle, components 
(less TG), operation and 
boundary conditions 
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LGFCS NG “Dry Cycle” Configuration 

Same configuration for an IGFC cycle 

• Anode and cathode ejectors 

• Reformers and heat exchangers 

• Off-gas burners 

• Insulation 

• System control methodology 
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6 Phase 1 Metric Test (5,000 hours) 
Operating Conditions: 

● 2 active/3 inactive strips 

● Cathode Conditions 

 

 

 

 

 

 

● Anode Conditions 
● Canton rig single pass, no anode recycle 

● Inlet composition matches that with recycle  

 

Time Pressure
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7 Block start-up similar to full system operation 
   

T1409 - Epsilon 2 Strip Test - Cathode Temperatures
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Epsilon Block Power
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Phase 1 Test – Performance and Durability 

● Initial ASR 

● 0.34 ohm-cm2 

● Fuel Utilization 

● System equivalent ~78.8%  

 Once through ~59.7% 

●  System Efficiency (anode loop) 

● System equivalent ~61.1% 
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Phase 2 Metric Test (3,000 hours) 

● Test rig in Derby, UK more closely 
matches the system configuration: 

● anode recycle loop 

● implements primary and auxiliary 
cathode recycle loops 

 

● Phase 2 test used bottled CH4 

● Status: 

● 5 strips built and pre-reduced 

● Early-Sept start date 

Derby, UK 
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Pre-reduction of Strips  

● Planned for high volume manufacturing QA 

● Now being implemented for block-scale testing 

 Bundle OCV 

Bundle Strip 1 Strip 2 Strip 3 Strip 4 Strip 5 

1 358 352 352 353 354 

2 355 349 349 350 350 

3 356 349 349 350 352 

4 352 347 347 346 350 

5 351 348 348 348 350 

6 351 347 347 348 349 

7 353 348 348 348 350 

8 354 349 349 349 351 

9 355 350 350 349 352 

10 355 351 351 349 351 

11 354 352 352 350 353 

12 353 354 354 353 355 
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Outline 

● System Relevant Block-Scale Testing  

● Cell Technology Status:   

● Long-term durability 

● Degradation mechanisms and electrode 

optimization 

● Reliability Methodology 



 

 

LG data        

12 

Plant Operation Strategy
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● Degrade efficiency to meet constant power 
 0.003 ohm-cm2/1000 hr 

0.12% Power/1000 hr 

Current Technology 

Current Technology 
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Provides Detailed Cell 

Component Analysis 

Prototypic Tube Manufacture 

Tube-Level Performance 

Full Prototypic Scale 

Atmospheric Stands – Technology Screening 

Pressurized Stands – Full System Testing 

Durability Testing Approach Builds up 
from Subscale Testing 
● Map performance and durability over operating envelope 

● Confirm at larger scales while improving manufacturing 
consistency 

 Fully Prototypic Environment 

Including BOP Components 
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14 Long-Term Degradation < 1%/1000 hours 
Durability Performance over Temperature Envelope
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PBT-3: 860ºC Bundle

Cathode: ~10% O2, 1.2% H2O, bal N2 6.4 Bara

Bundle PBT3 Degradation = 0.92%/1000 hrs to 3900 hrs
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Subscale Durability Map Demonstrates 
Durability Trends 

Design Operating Range 

End of life model 

Beginning of life model 
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Scale-Up of Epsilon Performance and Durability
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Scale-Up of Epsilon Performance and Durability
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Scale-up of durability demonstrated, 
some variation in performance 

Active area of 2 strips is 2400X Pentacell 

Differences between block and subscale  
1. NG Fuel with 35 ppb residual sulfur 

2. Cathode steam 3 - 4% 

3. BOP chrome sources, insulation cont. 

4. Bundle-to-bundle fuel distribution 

5. Cathode air and temperature distribution 

6. Manufacturing variability 
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Outline 

● System Relevant Block-Scale Testing  

● Cell Technology Status:   

● Long-term durability 

● Degradation mechanisms and electrode 

optimization 

● Reliability Methodology 
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EIS for PCT63B RU - Effect of Time
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Key Degradation Contributions Identified:  
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Overall Degradation Rate: 
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Overall Degradation Rate: 
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Cathode degradation is 

dominant 

High-Temperature (925ºC) 

Anode + Cathode 

degradation observed 

Cathodic 

change 

Anodic 

change 

 

 

Cathodic 

Change 

Low-Temperature (800ºC) 

Initial Cathode degradation 

then stability 

EIS for PCT89A Effect of Time

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.00 0.10 0.20 0.30 0.40 0.50

ASR, ohm-cm
2

-Z
"

PCT89 RU-A: 1537 hrs
PCT89 RU-A: 4755 hrs
PCT89 RU-A: 8000 hrs

0.4370.418

1.2% Steam, 10% O2

Anode: Bundle Outlet

Pressure = 6.4 Bara

Temperature = 800ºC

Overall Degradation Rate: 

 0.0038 ohm-cm2/1000 hrs 



 

 

LG data        

19 Cathode Changes Observed Long-Term  
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PCT63A 

● Mn-rich at cathode/electrolyte interface 

● Some cathode densification showing up at 16,000 
hours, relatively absent at 8,000 hours (for testing 
at 860C) 

860oC for 16,000 hrs (PCT63) 

Mn enrichment at electrolyte interface 
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20 Exploring MnOx presence vs. operating temp. 

● Free MnOX observed in both as-fabricated and tested cells  

● Initial analysis: more smaller MnOx grains observed at TPB 
for cell tested at lower temperatures 
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Improved Cathode – Promising Results at Low 
Temperatures 

● Lower degradation rate than standard 
cathode at low-temperature operation 

● Free MnOx segregation from LSM may 
cause performance loss 
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22 Standard Cathode Shows Segregation of 
Stabilizing Ion from Ionic Phase 

● YSZ is stable after short period 
of operation at both low and 
high temperature operation 

● Local Y depletion was detected 
after 6500 hrs of operation at 
925oC leading to monoclinic 
ZrO2 

● Modified LSM cathode shows no 
evidence of monoclinic ZrO2 

low Y2O3 

content, 

mono. ZrO2 
LSM 

  

Standard cathode at 925oC for 6500 hrs 
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Fuel Content and Ni(OH)2 Activity vs Cell Position at Temperature
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Ni(OH)2 Equilbrium within Blocks 

Block avg Temp/avg Uf 
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Block outlet Temp/peak Uf 
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24 Anode microstructure changes greatest 
at extremes of temperature and Uf  

860C/8000 hrs 

 bundle mid-point 

860C/16000 hrs 

 bundle mid-point 

 

Aggressive testing outside block envelope 
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 Anode current 

collector 
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As-reduced anode Aggressively tested anode  

Surface close to  
Anode/ ACC  
Interface 

Surface close to  
Anode/ACC  
Interface 

Anode 3D Reconstruction Highlights Changes 

at Anode/ACC Interface 

Porosity=41% 

Pores 

ionic 

metal 

Porosity=29% 

  

3D pillar was 

constructed 

By FIB milling of 

series of 

thin slices 
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26 Single Layer Anode Technology Showing 
Improved Microstructure Stability  
● Two single cells were tested in same rig under aggressive 

temperature and fuel utilization conditions 

● Post test analysis performed after 630 hrs of testing at 

aggressive conditions 

SCT6-95A: Standard anode SCT6-95B: Single layer anode 

6.4 bar 
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A New Cell-to-Cell Interconnection Materials Set 
Developed for Single Layer Anode Technology 

● Interconnect ASR >0.2 ohm-cm2 from materials incompatibility issue 
with anode 

● Optimized formulation achieved typical 0.07 ohm-cm2 range of ASR 

 

PIC ASR=0.067 ohm-cm^2 

Original interconnect 

Modified interconnect 
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Focus on reducing peak operating 
temperature to extend lifetimes 
● Latest cell technology offers potential for lower degradation rates and improved system 

efficiency 

● Lower ASR cell technology is entering full system durability screening 

 
 100C block ΔT 

100C block ΔT 

1 bar data 
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Outline 

● System Relevant Block-Scale Testing  

● Cell Technology Status:   

● Long-term durability 

● Degradation mechanisms and electrode 

optimization 

● Reliability Methodology 
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30 Infant Mortality and Time Dependent 
Reliability Considerations 
● Infant Mortality: 

● Thermal and stress analysis 

● Insure that design and system 
operational modes can accommodate 
the stack material 

● Material property database being 
generated 

●   Life-time Reliability 

● Time dependent, slow crack growth 
mechanisms being studied 

 20 mm x 40 mm sample 
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Strength specification met for higher 
porosity substrates 

● Room temp. MOR >29 MPa       
(full-size substrate)  

● Weibull modulus >10 

● ~25% porosity for permeability 
factor spec. of 0.05 0.005 

Kyocera Combined Lots 0022 - 0028 - All 1425C/3hrs - Weibull Probability of Failure
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MOR = 33.2 MPa (Pf=63.2%) 

Weibull Modulus = 15.2 

Unit volume Char. Str. = 26.8 MPa 

(Pf=0.02%, mm3 basis) 

 Full size substrate, room temp., lots 0022-0028 



 

 

LG data        

32 

Substrate strength\RT - Edge: 
Substrate strength\950 C - Edge: 
Substrate strength\800 C - Edge: 
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MMA Substrate Strength and Toughness 
Increase with Temperature 
● Substrate is MgO+MgAl2O4 (MMA) 

● Improved strength and toughness at temperature benefits reliability 

  

 

 
Fracture Toughness 

Strength RT 

950C 

800C 

Temperature

Strength, MPa 

(Pf=63.2%) Weibull Modulus

room temp. 42.3 16.2

800C 49.5 19.3

950C 50 19.2

Test coupons from substrate edges 
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33 ORNL Performing Slow Crack Growth 
(SCG) Measurements of MMA Substrate 

 

● Thus far the MMA substrate is demonstrating reasonable SCG resistance 

● Data in fuel environments with moisture content is most relevant 

 

 

               v = AKI
n 

 

v, crack velocity 

KI, stress intensity 

A and n, f(mat’l, environ.) 

n, slow crack growth exponent 

900C 
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34 SCG Comparison of MMA and Ni:YSZ 
● ORNL had previously tested porous Ni:YSZ under Core Technology Program 

● MMA substrate compares very favorably to other SOFC substrate materials 

● Very limited SCG literature data for electrolytes (n from 8-25, air/900-1000C), 
none in high H2O fuel 

● Compressive electrolyte residual stresses for anode- and MMA-supported may 
reduce risk.  Electrolyte SCG a greater concern for electrolyte supported SOFC 
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35 SCG data combined with Weibull 
characteristics can allow lifetime predictions  
● Guides design allowable stresses for components to meet lifetimes 

(probabilistic) 

● Consider Pf of 1 in 360 (0.003) for blocks 

     (1 failed substrate within a 5 strip block) 

Example of calculations/predictions with SCG data.   

For illustrative purposes only 

Relationships developed originally 

for glass components (Weiderhorn) 

Requires mat‟l properties at operating condition: 

KIc, fracture toughness 

σo, characteristic Weibull strength 

m, Weibull modulus 

n, slow crack growth exponent 

A, slow crack growth coefficient 

 

Requires inputs of: 

Y, geometric factor for crack orientation/loading 

Pf, desired probability of failure for component 

VE, Volume of mat’l in component under stress 

σ, stress level of elements within component 
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Pf = 0.00003 Pf = 0.0003 Pf = 0.003
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Conclusions 

● LGFCS established, combining LG and Rolls-Royce talents 
and resources to commercialize MW-scale IP-SOFC 
technology 

● Stack degradation rates trending under the SECA Phase 2 
target 

● Next generation/optimized electrodes screened and entering 
long-term durability testing to advance to 5-year service life 

● Current emphasis on ceramic materials database generation 
and stress analysis to progress understanding of reliability  
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