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SOFC Cathodes are Dynamic Objects
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SOFCs Ionic Currents
0.5 amps/cm2

1.6 × 1018 O/cm2/second

2400 oxygen ions/unit cell/second

The goal is to convert energy, a lot of energy, 
between different forms.
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Overview of Synchrotron X-Ray Program

Bulk structure and properties (e.g. 
thermal expansion)

Interface structure at operating 
temperatures in typical atmospheres

Dynamic response of cathodes under 
electrochemical loading

Chemical state of atoms in cathodes 
under operating conditions
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Presentation Plan
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 Strontium Segregation

 Lattice Parameter, Conductivity and Overpotential

 B-Site Chemistry and Distribution
(see poster by Kee-Chul Chang, et al.)

Focus on La0.6Sr0.4Co0.2Fe0.8O3-δ
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LSM on DyScO3

Applied Physics Letters 93, 151904 (2008)

Operating pO2

(atmospheric)

+35%

Operating T
(700-1000 C)

Low T
(300 C)

Low pO2

(mTorr)
+50%

+21% +25%

Change in Sr concentration from bulk

20 nm thickness La0.7Sr0.3MnO3
 Observe that strontium segregation depends on 

both T and pO2

 Charged vacancies are often not considered in 
surface segregation  studies.  

 The concentration of these defects depends 
strongly on temperature and pO2.

 A gradient of VO
 near the surface could drive 

Sr segregation.
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Strontium Segregation in Mixed Conductors

La0.6Sr0.4CoO3 (001)
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La0.6Sr0.4Co0.2Fe0.8O3 (001)

 Similar magnitude of strontium segregation as in LSM/DSO

 No pO2 dependence at these relatively high temperature.



Mixed Conductor versus Electronic Conductor
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 LSM: surface oxygen vacancies

 La0.6Sr0.4CoO3 (LSC) & La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) : bulk oxygen vacancies
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Bulk STO LSCF film 

Higher Resolution with Reflectivity Measurements
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The TXRF results have limited 
resolution normal to the 
surface (about 2-4 nm)

Analysis of specular 
reflectivity can yield atomic 
resolution

Use “direct methods” to 
interpret these complicated 
spectra



Atomic Scattering Factors

The scattering by an individual atom is dominated by the energy independent 
Fourier transform of its electron density plus real and imaginary resonant 
components that have a strong energy dependence unique to each element.

f(k,E) = f0(k) + f’(E) + if”(E)

where k = 4πsin(θ)/λ and E is the photon energy. The imaginary component f”(E) 
is proportional to the atomic absorption coefficient.

Strontium Atomic Scattering Factors

Strontium f0
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Electron density: non-resonant (E=16.0 keV) and 

resonant (E=16.109 keV) at 750°C
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Lower electron density in resonant case –
particles consist of a large amount of Sr.

Non-resonant

July 27, 2011

Bulk STO
LSCF film 

Bulk STO
LSCF film 

Resonant



Segregation Profiles at 750°C
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Strontium segregation is 
observed at the interface 
and at the LSCF surface

June 24, 2011
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 Strontium Segregation

 Lattice Parameter, Conductivity and Overpotential

Focus on La0.6Sr0.4Co0.2Fe0.8O3-δ



The incident X-ray beam 
was ~20 μm wide

V

(001) YSZ

GDC
LSCF

X-Ray Position

100 μm Platinum Wire

Platinum paste

Platinum Mesh Electrode

Overview of Electrochemical Measurements
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Measure the response of a 
LSCF/GDC/YSZ stack (20 nm of 
LSCF) with platinum electrodes as a 
function of pO2, electrochemical 
potential and x-ray position.

Measure the location of the LSCF 
(004) peak to determine the lattice 
parameter of the film.

Systematically change the oxygen 
partial pressure and the applied 
cathodic potential while 
monitoring current through the 
sample.



i-V Curve at 600°C

T=600°C
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Oxygen reduction 
reactions are the 
limiting mechanism

From other data, the 
active area is ≈0.1 cm2

so -1V yields a current 
density of 0.5 mA/cm2



Correlate Lattice Parameter with Conductivity: 500ºC
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• L decreases with pO2 and with cathodic overpotential (-0.3 V)

• Effect of overpotential is amplified at lower pO2

• Kinetics of lattice expansion vary with pO2

• Faster kinetics at 0.15 Torr correlates with a “kink” in conductance 
data. 

La0.6Sr0.4Co0.2Fe0.8O3 (004) Peak



LSCF Lattice Parameter Shift vs Applied Potential
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600 °C
1.3 mm from 
electrode

Using Bishop1, 0.4% 
strain corresponds to 
δ=0.13 or 4% oxygen 
vacancies. 

The “odd” functional 
dependence limits 
models – not just 
current driving 
oxygen vacancies into 
the film.

1S.R. Bishop, K.L. Duncan, E.D. Wachsman, J. Am. Ceram. Soc. 93 (2010) 4115-4121.



LSCF Lattice Parameter Change versus Position
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600 °C
-1 V

The lattice parameter 
changes smoothly with 
distance from electrode.

The may be useful in 
mapping conductivity 
and potential profiles 
since the electrochemical 
potential dependence is 
simple.



Current distribution in thin films

 Electronic and ionic carriers required 
for oxygen reduction reaction

 Inhomogeneous electrochemical 
potential on MIEC film surface

 High sheet resistance

 Limited ionic conductivity 

 Need to understand current flow and 
potential distributions, i.e., rate of 
oxygen reduction events

film

working
electrode

counter electrode (CE)

substrate

O2(g) +2VO
 + 4e- → 2OO

x

VO


e-

film

working
electrode
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substrate

O2(g) +2VO
 + 4e- → 2OO

x

VO


e-e-

p = film/ substrate

L

 Simple case: 2 parallel surface electrodes 

 Similar situation witnessed in our 
electrochemical measurements

 Modified Farnell’s equation* for 
measuring complex in-plane electrical 
properties of thin films

* N. Kidner, et al., Thin Solid Films 496 (2006) 539-545.
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Time Dependence of Lattice Parameter Shift
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Lattice expansion occurs 
in 1 second.

I ≈ 0.5 mA/cm2

≈ 0.013 vac./unit cell/sec

δ = 0.013 is an order of 
magnitude smaller than 
predicted from Bishop 
chemical expansion data 
for 0.4% lattice expansion 
(δ = 0.13)



Chemical Expansion of LSM/YSZ(111) at 800C

SECA Workshop

LSM has smaller chemical expansion and slower kinetics 
compared to LSCF

-1V

+1V

+2V

-2V

OCP

OCP
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LSCF Chemical Expansion Summary

S.R. Bishop, K.L. Duncan, E.D. Wachsman, J. 
Am. Ceram. Soc. 93 (2010) 4115-4121.

 Range of chemical expansion for the 
LSCF is from -0.2% to 0.8% implying 
δ ~ 0.3 change in stoichiometry based 
on Bishop’s recent results

 High anodic potentials induce lattice 
expansions that may indicate the initial 
stages of phase change

 Working through defect models, e.g. 
those of Wachsman and coworkers, to 
develop better models of this process.

July 27, 2011SECA Workshop 21



Project Conclusions and Direction
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 Surface Reduction

 LSM (electronic conductor): Strontium surface segregation driven by surface oxygen 
vacancies

 LSC, LSCF (mixed conductors): SrO formation at intermediate temperatures (700˚C)

 LSCF: surface reconstruction varies with temperature and strain

Oxygen Exchange

 LSCF: significant changes in cobalt edge position (valence state)

 Total reflection inelastic x-ray scattering: new window on O K-edge, 
low energy cation states

 Electrochemical potential introduces features in c-axis lattice expansion

 Effect is suggests very large vacancy concentrations

 Time response is inconsistent with current densities and needed vacancies.

 Lattice expansion is correlated with valence changes on Co.

 Current Effort

 Develop better surface defect models and their relationship with catalytic activity

 Correlate these effects with fuel cell performance

 Study intercalation into porous backbone using atomic layer deposition (e.g. LSM 
deposited on LSCF)
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