Progress in SECA Coal-Based Program

12th Annual SECA Workshop Pittsburgh, PA July 26-28, 2011

Hossein Ghezel-Ayagh, FuelCell Energy, Inc.

Presentation Outline

- Introduction
 - FCE SECA Program Team Members
- SECA Coal-Based SOFC Program Overview
- Progress in SOFC Technology
 - Cell Development and Manufacturing
- Stack Development
 - Scale-up and Metric Tests
- Proof-of-Concept Module (PCM) Development
 - Stack Module
- Baseline System Design and Cost Analyses
 - Integrated Gasification Fuel Cell (IGFC) System Configuration
 - Baseline Power Plant Cost Estimate
- Conclusion and Future Plans

FuelCell Energy (FCE)

- Premier developer of stationary fuel cells with >40 years of experience
- Headquarters and R&D in Danbury, CT (USA), with 65,000 ft² manufacturing facility in Torrington, CT (USA)
- Delivering Direct FuelCell® (DFC®) power plants to commercial and industrial customers
 - 182 MW installed and in backlog
 - Over 80 plants generating power at more than 50 sites globally
- Product sales and service backlog in excess of \$200 million
- Established commercial relationships with major distributors in the Americas, Europe, and Asia

Multi- MW DFC-ERG in Toronto, Canada

600 kW plant at a food processor

1.4 MW at a municipal building

2.4 MW plant owned by an IPP

11.2 MW plant owned by an IPP

Versa Power Systems (VPS)

Privately held company

- > Founded as joint venture of Solid Oxide Fuel Cell Consortium in 2001
- > Headquartered in Littleton, Colorado, United States
- > SOFC development facility in Calgary, Alberta, Canada

Planar solid oxide fuel cell technology

- > Achieved high electrical power densities and long life using low-cost materials
- > Established manufacturing processes scalable to high volume production rates

Current product effort focus on SECA stacks

- > Developed and verified modular approach providing size flexibility
- > Existing 32,000 ft² facility has capacity for initial market production

SOFC Cell and Stack Technology Background

- Planar anode supported cells (up to 33 x 33 cm²)
- Capable of operating from 650 C to 800°C
- Ferritic stainless steel sheet metal interconnect
- Cross-flow gas delivery with manifolds integrated into the interconnect but not through the cell
- Compressible ceramic gasket seals

Standardized stack blocks configurable into stack towers for various

power applications

Presentation Outline

- Introduction
 - FCE SECA Program Team Members
- SECA Coal-Based SOFC Program Overview
- Progress in SOFC Technology
 - Cell Development and Manufacturing
- Stack Development
 - Scale-up and Metric Tests
- Proof-of-Concept Module (PCM) Development
 - Stack Module
- Baseline System Design and Cost Analyses
 - Integrated Gasification Fuel Cell (IGFC) System Configuration
 - Baseline Power Plant Cost Estimate
- Conclusion and Future Plans

Program Technology Area

FCE's program focuses on the development of solid oxide fuel cell (SOFC) cell and stack technology suitable for use in highly-efficient, economically-competitive central generation power plant facilities fueled by coal derived synthesis gas (syngas).

Program Goals

Development of large scale (>100 MWe) coal-based SOFC systems with:

- > At least 50% electrical efficiency from coal (higher heating value)
- > Performance to meet DOE specified metrics for power output, degradation, availability, and reliability
- > Fuel cell power island factory cost <\$400/kW (2000 USD)
- > More than 90% of carbon capture from coal syngas, as CO₂ for sequestration
- > Reduced water consumption as compared to the existing coal power plant technologies

Coal-Based SECA Program Status

 FCE team successfully completed Phase II of the Coal with Based SECA Program in April 2011 with development of a new generation of low-cost highperformance cell technology.

SECA Phase III Project is to enhance stack

Presentation Outline

- Introduction
 - FCE SECA Program Team Members
- SECA Coal-Based SOFC Program Overview
- Progress in SOFC Technology
 - Cell Development and Manufacturing
- Stack Development
 - Scale-up and Metric Tests
- Proof-of-Concept Module (PCM) Development
 - Stack Module
- Baseline System Design and Cost Analyses
 - Integrated Gasification Fuel Cell (IGFC) System Configuration
 - Baseline Power Plant Cost Estimate
- Conclusion and Future Plans

Cell Development Accomplishments

Cathode Development

- ☑ Enhanced Performance and Endurance
- Reduced Operating Temperature
- Increased Operating Window

Anode Development

- ☑ Reduced Cell Thickness
- ☑ Enhanced Performance at Higher Fuel Utilization and at Lower Temperature
- Enhanced Cell Mechanical Properties and Robustness

Scale Up & Manufacturing Development

- Scaled up from 121 cm² → 550 cm² → 1000 cm²
- Established Manufacturing Processes for Baseline 550cm² Cells
- ☑ Completed Process
 Integration and Validation in Transitioning from TSC2
 → TSC3 technology

The Evolution of Cell Technology

Significant progress has been made toward enhancing cell performance and endurance.

ASR (Area Specific Resistance) Reduction and Performance Improvement

Performance of Improved Cells

Versa Power

Systems

FuelCell Energy

achieved.

Cell Performance Enhancement in Stack

Versa Power

Systems

Scale-up TSC-3 cells with thin anodes have shown high performance at high fuel utilizations in a 16-cell stack.

Single Cell Stability Achievements (750 C)

Performance degradation rate of <0.3%/1000 h was achieved in 17,000 h of operation using new generation TSC-3 cell technology and interconnect alloy.</p>

Parametric Testing of Alloys in a 32-cell Stack

Versa Power

Systems

Phase II research has identified a superior alloy, offering higher oxidation resistance and a lower performance degradation rate.

FuelCell Energy

Recent Achievements in Cell Fabrication Process

- Established fabrication process capabilities
 for large area cells
 - Cells up to 1000 cm² (33 x 33 cm²) in size were produced using TSC cell manufacturing process
 - > Capital equipment for all major process units was added in order to accommodate increased cell size and volume
- Developed and implemented the next generation of cell fabrication processes
 - > Cell thickness was reduced by more than 40%
- Fabricated > 5000 cells (25 x 25 cm²)
 - > Production volume of 500 kW (annual) was established and yield greater than 95% was demonstrated

Presentation Outline

- Introduction
 - FCE SECA Program Team Members
- SECA Coal-Based SOFC Program Overview
- Progress in SOFC Technology
 - Cell Development and Manufacturing
- Stack Development
 - Scale-up and Metric Tests
- Proof-of-Concept Module (PCM) Development
 - Stack Module
- Baseline System Design and Cost Analyses
 - Integrated Gasification Fuel Cell (IGFC) System Configuration
 - Baseline Power Plant Cost Estimate
- Conclusion and Future Plans

Stack Development Accomplishments

- **→** Improved stack performance
 - ☑ Higher power density
 - ☑ Higher fuel utilization
 - Migher direct internal reforming
- → Enhanced stack endurance
 - ✓ Improved stack thermal and flow management
 - ✓ Incorporated TSC3 cells
 - Incorporated advanced interconnect alloy, contact and flow media
- Reduced stack cost

Cell Size	25 x 25 cm ²
Active Area	550 cm ²
Number of Cells	92

Systems

Stack Endurance Tests

Low performance degradation rate (~0.4% /1000 hr) is demonstrated in a sub-scale stack with > 2 years of operation.

120-Cell Stack Metric Test

GT058027-0001 120-Cell Stack Cell Active Area: 550 cm²

Test Duration (hours)

- Stack met Phase II metric test targets:
 - Peak power rating of 25.2 kW
 - >1,500 hours of operation
 - Performance degradation rate < 1%/1000 h (surpassing 2%/1000 h DOE target)

25

Stack Power (kW)

2000

Next Generation 96-Cell Stack Block

- Stack Instrumentation
 - > Eliminate instrumentation plates
 - > Reduce on-cell thermocouples
- Improve stack block flow management with enhanced manifold and flow medium designs
- Stack Manufacturing
 - > Develop production tooling
 - > Refine stack acceptance criteria

Stack Tower Testing

3 x 64-cell stack tower 2 x 92-cell stack tower

2 x 92-cell stack tower

SO-30-1 Tower Assembly

SO-30-3 Tower Assembly

SO-30-4 Tower Assembly

- Thermally self-sustaining test environment (gas preheated only)
- Provisions for simulated anode gas representative of both syngas and natural gas fueled systems
- Providing valuable lessons for future larger stack module designs

Stack Tower (SO-30-4) Test

Versa Power

Systems

Confirmed Operation on Simulated Coal Syngas with High Methane Gas Composition from an Advanced Catalytic Gasifier.

Presentation Outline

- Introduction
 - FCE SECA Program Team Members
- SECA Coal-Based SOFC Program Overview
- Progress in SOFC Technology
 - Cell Development and Manufacturing
- Stack Development
 - Scale-up and Metric Tests
- Proof-of-Concept Module (PCM) Development
 - Stack Module
- Baseline System Design and Cost Analyses
 - Integrated Gasification Fuel Cell (IGFC) System Configuration
 - Baseline Power Plant Cost Estimate
- Conclusion and Future Plans

SOFC Module Evolution

60 kW Module Development Cycle

Versa Power

Systems

60 kW Stack Module Hardware Fabrication

60 kW Module Hardware Assembly

→ SOFC Module Hardware Assembly is in Progress for Future Tests

250 kW Module Design

Versa Power

Systems

Implement lessons learned from FCE's current commercial DFC product, in the areas of: detailed design, manufacturing, value engineering, cost reduction, serviceability, and shipping.

PCM System Performance

System Performance Summary: Normal Operating Conditions

Fuel Cell		
DC Power	277.2	kW
Inverter Loss	13.9	kW
SOFC Gross AC Power	263.3	kW

CONSUMED POWER

AC Power	8.9	kW

Net Generation

Plant Net AC Output	254.4	kW
Efficiency (HHV)	55.5	%
Efficiency (LHV)	61.5	%

Versa Power

Systems

MDU system is designed to lay the foundation for market entry 250 kW SOFC product operating on natural gas and biogas.

Presentation Outline

- Introduction
 - FCE SECA Program Team Members
- SECA Coal-Based SOFC Program Overview
- Progress in SOFC Technology
 - Cell Development and Manufacturing
- Stack Development
 - Scale-up and Metric Tests
- Proof-of-Concept Module (PCM) Development
 - Stack Module
- Baseline System Design and Cost Analyses
 - Integrated Gasification Fuel Cell (IGFC) System Configuration
 - Baseline Power Plant Cost Estimate
- Conclusion and Future Plans

Coal-Based SOFC System with Catalytic Gasification

POWER GENERATION SUMMARY	kW	% Q input	% MW gross
Fuel Gas Expandors Gross Power @ 20 kV	49,750	7.04%	10.96%
Fuel Cell Inverter AC Gross Power @ 20 kV	362,134	51.28%	79.78%
WGCU Off Gas Expander Gross Power @ 20 kV	7,024	0.99%	1.55%
Steam Turbine Gross Power at Generator Terminals @ 20 kV,	35,019	4.96%	7.71%
Total Gross Power Generation @ 20 kV	453,927	64.27%	100.00%
Total Auxiliary Load	39,342	5.57%	8.67%
Net Power Output at 345 kV	414,585	58.70%	91.33%
Net Efficiency Excluding CO ₂ Compression & Thermal Input			
Coal feed, lb/h	202,980		
Coal HHV (AF), Btu/lb	11,872		
Coal Thermal Input, kWth	706,255	100.00%	155.59%
Net Plant Efficiency (HHV)	58.70%		

Combined with high methane producing gasification, coal based atmosphericpressure SOFC systems are capable of achieving ~ 59% efficiency and 99+% carbon capture.

H₂ Co-Generation System Concept

IGFC systems have the flexibility for hydrogen co-production at a very attractive overall efficiency.

MW-class Module Development Approach

FCE's DFC MW Module

SOFC MW Class Module (scale: similar)

→ Use lessons learned in FCE DFC MW-scale commercialization to optimize design for SOFC MW Class System.

Baseline SOFC Power Island

- SOFC power island includes:
 - > 8 Sections of 42 fuel cell stack modules
 - > Steam turbine
 - > Two syngas expanders

SOFC power island lay-out takes advantage of well-thought clustering concept using repeated arrangements of grouped components.

Layout of 42-Module SOFC Cluster

■ SOFC cluster design takes advantage of modularity of fuel cells.

IGFC Site Layout

Lay-out of 670 MWac IGFC plant includes 336 SOFC stack modules, two syngas expanders, and a steam bottoming cycle.

Factory Equipment Cost Estimate

resources & energy

Coal

Cost Reductions were achieved via:

- Stack cost reductions and performance improvements
- > Integrated system performance optimizations
- Value engineering of BOP components

Systems

Air (to ASU)

Stack Cost Reduction

Cost Reduction Focus Areas

- 1. Stack Performance Increase
 - Peak Power Increase
 - Resolved thermal management issues
- 2. Material Reduction:
 - Thinner stack components
 - Interconnect material reduction
 - Reduced number of intermediate plates
- 3. Manufacturing Process Changes
 - Improved material utilization
 - Automation
 - Elimination of process steps
 - Interconnect manufacturing development

→ The fuel cell stack cost have decreased substantially mainly due to the R&D activities in the SECA Phase II project.

Balance-of-Plant Factory Equipment Cost Estimate

- Costs were estimated by WorleyParsons, based on extensive in-house cost database in addition to budgetary vendor quotations
- Cost estimation is based on two 670 MW nominal power plants manufactured per year (2000 USD).
- > Estimate includes Factory Equipment costs for the Power Island, exclusive of gasification, syngas cleanup, and CO₂ separation/compression systems.

Factory Cost Estimate Sensitivity Results

Monte Carlo Simulation was performed to predict Probability Distribution Function (PDF) of Estimated System Cost.

- Mean = \$390.8/kW, with a range of \$348.8 to \$440.2/kW
- > The range between the 10th and 90th percentiles is from \$374.0 to \$407.8 or within \$17/kw from the mean

Presentation Outline

- Introduction
 - FCE SECA Program Team Members
- SECA Coal-Based SOFC Program Overview
- Progress in SOFC Technology
 - Cell Development and Manufacturing
- Stack Development
 - Scale-up and Metric Tests
- Proof-of-Concept Module (PCM) Development
 - Stack Module
- Baseline System Design and Cost Analyses
 - Integrated Gasification Fuel Cell (IGFC) System Configuration
 - Baseline Power Plant Cost Estimate
- Conclusion and Future Plans

Summary Accomplishments

- ► Modifications in cell materials have enhanced cell performance and reduced degradation rate to <0.3%/1000 h.
- ▶ Third generation manufacturing processes (TSC-3) were developed for scaled-up 550 cm² active area (25 cm x 25 cm) cells based on high-performance thin cell technology.
- ► Over 5000 cells of 25 cm x 25 cm cell size (550 cm² active area) have been fabricated in the pilot manufacturing facility, with >95% product yield.
- ►A 120-cell stack metric test successfully met DOE's requirement of completing 1500 h of testing before the end-of-Phase II, demonstrating a peak power of 25.2 kW and achieving a steady state average power degradation rate of 0.9%/1000 h (well below the Phase II DOE requirement of ≤ 2%/1000 h).

Versa Power

Systems

- ► Stack tower concept suitable for large-scale SOFC modules was successfully demonstrated by achieving power output of >30 kWdc and operating on simulated coal-derived syngas.
- ▶ A Baseline IGFC System (~670 MW nominal) utilizing catalytic gasification and capturing > 99% of carbon (as CO2) in the syngas was developed with an electrical efficiency of 58.7% (high heating value of coal).
- ►SOFC stack Factory Cost was estimated at \$85/kW (Year 2000 dollars), meeting the Phase II target of ≤\$100/kW.
- ▶ The Baseline Power Plant system Factory Cost Estimate, audited by an independent party, achieved a cost of \$372/kW (2000 USD) for the SOFC power island meeting the DOE metric of <\$400/kW.</p>

FCE's Coal-Based SECA Program Plan

► FCE's long-term plan is development of SOFC power plants capable of using a variety of fuels such as natural gas, biogas, and coal syngas.

Acknowledgements

- Support for FCE's SECA Coal Based Program provided by the US Department of Energy (DOE) through the co-operative agreement DE-FC26-04NT41837
- Support and guidance by the management team at NETL

Thank You!

Versa Power Systems