Viscous Glass Sealants for Solid Oxide Fuel Cells

Scott Misture and James Shelby, co-Pls

Alfred University Alfred, NY

DOE Project Manager: Dr. Joseph M. Stoffa

Contract Number: NT0005177

SECA Meeting, 2011

Overview of Results

- 1. Non-alkali boro-gallio-silicates seal between 750 and 850 °C
 - Possible OT around 750 °C
 - Crystallization is extensive at 850 °C
 - 3. Retain a large fraction of remnant glass at 750 °C for viscous flow
- 2. Low alkali boro-gallio-silicates seal between 650 and 850 °C
 - 1. Possible OT from 650 °C to 850 °C
 - 2. Crystallization is extensive at 750 °C, but remnant glass remains
 - 3. Low reactivity with SOFC stack components
- 3. Boro-germano-silicates seal between 650 and 850 °C
 - 1. Best thermomechanical match with SOFC stack components
 - Ideal viscosity behavior
 - 3. Potential for Ge reduction by H₂

Overall Strategies for Viscous Sealants

- Fully amorphous No crystallization on heating or cooling
- Fully amorphous at operating temperature Any crystals formed on cooling melt during heating
- Partially amorphous at operating temperature Remnant amorphous phase allows flow

Crystals may reduce mass transport through the glass & prevent degradation over time

Overall Glass Composition Strategy

Maintain a high concentration of glass former

- a) achieve controlled viscosity behavior
- b) minimize crystallization

Vitreous network

- Controlled viscosity

<u>Inverted structure</u>

- Fragile viscosity
- Crystallization

Overview of "viscous" - softening and viscosity

Overall Logic: Chemical Substitutions to Reduce Tg and Td Entirely New Glass Compositional Series

- Use of Ga₂O₃ instead of Al₂O₃
 - Ga ions lower Tg compared to identical Al-containing glasses
- Use of GeO₂ for SiO₂: GeO₂ exhibits properties similar to B₂O₃
 - high CTE, lower Tm than SiO₂, greater chemical durability than borate glasses
 - allows lower Tg
 - May form Ge colloids in the fuel atmosphere (inhibit with B₂O₃)
- Use combined Ga₂O₃ or GeO₂ with B₂O₃
 - Lower viscosity with lower alkali

In all cases consider alkaline earths to reduce alkali

Initial Search for Appropriate Glass Compositions

CTE values near 10 – 12 ppm/K Alkali content 20 mol% or lower

High Temperature Glasses

High SiO_2 content 590 < Tg < 770 C

-Flow at 850 C ranges from roofing cement to barely softening

Primary parameters to optimize:

- Viscosity
- ➤ Alkali content
- Crystallization

Low Temperature Glasses

High GeO_2 , B_2O_3 , or P_2O_5 content 514 < Tg < 590 C -excellent flow < 850 C

Primary parameters to optimize:

- Volatility
- > Alkali content
- Crystallization

Study both in parallel paths

First Optimization of high Tg, high viscosity silicates

Initial Silicate Glasses CTE 10-12 ppm/K, 20 mol% alkali Ga₂O₃ substitutions resists crystallization, lower Tg: 590-640 C Substitute SrO, ZnO for alkali, SiO₂ increase Tg, decrease η Substitute B₂O₃ for alkali decrease Tg and n Fine compositional modification

Glasses with large degree of crystallization, no flow by 900 C

additions of WO₃, F⁻, GeO₂, mixed alkaline earths, La₂O₃, Y₂O₃, Ta₂O₃

Glass Composition Development

Alkali GeO₂ SiO₂

Excellent flow behavior, low Tg, no crystallization, BUT risk of forming Ge colloids in H₂ atmosphere

B₂O₃ additions

Substitute alkaline earth for alkali

Ga₂O₃ additions

Tg: 540 - 590 C

Strong viscosity behavior

Substitute alkaline earth for alkali

Substitute B₂O₃ for remaining alkali

Small additions of alkali

Tg: 610 - 690 C

GallioSilicate Compositional Modifications

- 3rd and 4th stage of compositional adjustment
- Modification toward non-alkali glasses

Glass	Alkali	B_2O_3	Tg	CTE (ppm/K)	Tseal
Series	(mol %)	(mol %)	(C)	(100-400 C)	(C)
High Temp	20	<10	590 - 770	9 - 12	> 950
GaSi	10	<10	640 - 650	9 - 10	≈ 900
GaBSi	0	<10	660 - 710	7 - 10	≈ 850
GaBSi2	5	<10	610 - 630	8 - 10	≈ 7 50

Encouraging results:

- T_{seal} decreases with decreasing alkali content
- Tg approaches 600 C with only 5 mol% alkali

<u>Additions of Boron to Improve Flow Behavior</u>

Hot Stage Microscopy:

Press <50 µm glass powder into 3 mm pellet

GaSi glass: no significant flow before 850 C

GaBSi glass: significant flow before 850 C

Achieved improved flow with non-alkali GaBSi glasses

Alkali Gallio-Silicate Glasses

Frit samples on alumina Extensive crystallization after 504 hrs at 850 C High thermal stability of microstructure, yet little remnant glass phase

Alkaline Earth Boro-Gallio-Silicate Glasses

Frit samples Varied crystallization after 500 hrs at each temperature

Fully amorphous Largely crystalline

Alkaline Earth Boro-Gallio-Silicate Glasses

Low reactivity with electrolytes after 500h at 750 C - crystallization at interface

Alkaline Earth Boro Gallio-Silicate Glasses

Compatibility with protective Al₂O₃ coatings: 500h at 750 C - crystallization at interface

Low Alkali Boro Gallio-Silicate Glasses

Frit samples Varied crystallization after 500 hrs at each temperature

Crystallization Affects Thermal Expansion Behavior

Varied Crystallization Behavior

≈ 60% amorphous

Retain high amorphous content after 1500h at 850 C and 3 thermal cycles to RT 300 μm 300 μm 300 μm 500h 1000h

Remnant glass crystallizes on reheating to 850 C

Need to study temperature cycling further

Reactivity is Temperature Dependent

Low alkali boro-gallio-silicates

Lower interaction at 650 C:

- Sharp interface
- No penetration via grain boundaries

Interactions with 8YSZ Substrates

Low alkali boro-gallio-silicates on 8YSZ at 850 C in air 500h 1000h 1500h

Amorphous interface with 8YSZ up to 1500h

Partially crystallized interface with 8YSZ after 1000h

Interactions with 8YSZ Substrates

Reaction zone with 8YSZ up to1500h at 850 C: within ≈10µm of original surface

<u>Chemistry at the 8YSZ Interface – 500h</u>

Diffusion of glass components via grain boundaries into the 8YSZ after 500h at 850 C

Interfacial reaction yields crystals - 1500h

Interfacial crystallization at the 8YSZ interface after 1500h at 850 C

Interfacial crystals: SrZrO₃

Alfred University

Kazuo Inamori School of Enginee

Change glass composition to inhibit crystallization

Microprobe maps of glass-8YSZ interface after 1500h at 850 C

Reaction zone into YSZ along interface

Alfred University

Kazuo Inamori School of Engine

Interactions with Aluminized Stainless Steels

Interface of a GaBSi2 glass with Al-441SS substrate after 500h at 850 C

SS substrate on bottom of image

- 1. alumina coating remains after 500h
- coating impedes diffusion of chromium and iron ions into the glass

Generally Find Crystallization at the Al₂O₃ Interface

Interfacial crystallization of a GaBSi2 glass with Al-441SS substrate after 500h at 850 C

Crystals are KSrSiO₆

Boro-Gallio-Silicates – Direct Observation of Crack Viscous Sealing

In-situ high temperature SEM

Initial Search for Germanate Glass Compositions

CTE values near 10 – 12 ppm/K Alkali content 20 mol% or lower

High Temperature Glasses

High SiO_2 content 590 < Tg < 770 C

-Flow at 850 C ranges from roofing cement to barely softening

Primary parameters to optimize:

- Viscosity
- ➤ Alkali content
- Crystallization

Low Temperature Glasses

High GeO_2 , B_2O_3 , or P_2O_5 content 514 < Tg < 590 C -excellent flow < 850 C

Primary parameters to optimize:

- Volatility
- > Alkali content
- Crystallization

Study both in parallel paths

3rd Optimization: B-Ge-Si-O Glasses

- Currently in 3rd stage of compositional adjustment
- Modification toward non-alkali glasses

Glass	Alkali	B_2O_3	Tg	CTE (ppm/K)
Series	(mol %)	(mol %)	(C)	(100-400 C)
High Temp	20	<10	590 - 770	9 - 12
BGeSi	10	<10	540 - 590	7.5 - 10
BGeSi2	5	<10	610 - 640	8 -9

BGeSi Flow to 850C

Press <50 µm glass powder into 3 mm pellet Heat furnace at 5 C/min

BGeSi glass: excellent flow before 850 C significant flow by 750 C

BGeSi glass (non-alkali): significant flow before 850 C

Maintained desirable flow with non-alkali BGeSi glasses

B-Ge-Si-O on Al₂O₃ retain ~70% amorphous phase after 1500h at 850°C

Extensive crystallization at interface

Largely amorphous interface

Interaction with YSZ Depends on Chemistry

No attack of YSZ

Slow dissolution of YSZ

Test Seals: Aluminized SS vs. 8YSZ

Stable on cooling from 500h at 850 C

Crystals at SS/glass interface are stable.

No Trace of Chemical Attack after 1000h at 850 C on YSZ

- no preferential diffusion of alkali
- minimal diffusion of Zr and Y into the glass

Some Attack of Al₂O₃ Layer Possible, Depends on Composition

Note Ge enrichment at interface – good or bad?

Low Reactivity with 8YSZ

- Non-alkali BGeSi glass does not dissolve the electrolyte: 500h at 750 C
 - Only bulk crystallization

Summary

Identified potential new glass compositions to enable viscous sealing

- Modified gallio-silicate glass compositions low alkali & non-alkali
 - Optimized viscosity for sealing <850 °C
 - Identified possible OT ranges, which are defined by partial crysallization
 - Acceptable behavior when in contact with SOFC stack components after 1500h
- Modified germano-silicate glass compositions
 - Optimized viscosity for sealing at 650 °C and above
 - Studied crystallization behavior best viscosity for sealing
 - Verified compatibility with SOFC stack components to 1500h

<u>Acknowledgments</u>

- DOE NETL for providing funding for the research
 - Award Number DE-NT0005177
- Joe Stoffa and Briggs White for guidance throughout
- Jeff Stevenson at PNNL for providing coated stainless steel samples