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Elastic properties are obtained using 

ASTM 1875-08, a sonic resonance technique.

Rectangular bar specimens are suspended in a furnace, 

and excited over a range of frequencies.

Certain frequencies exhibit resonance.

The resonant modes are reproduced via FEA.

The frequencies are used to calculate

Temperature-dependent elastic properties
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E =  Young’s Modulus (GPa)
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E =  Young’s Modulus (GPa)

m=  Mass of specimen (g)

L, b, t =  Geometry of specimen (mm)

f =  Fundamental frequency in flexure (Hz)

data obtained via 

resonance.

First 5 resonant modes obtained using ANSYS.

The elastic properties are used as inputs for the 

structural and thermal models below.

INTRODUCTION

300 800 1300 1800 2300fE =  Fundamental frequency in flexure (Hz) First 5 resonant modes obtained using ANSYS. structural and thermal models below.

A small-scale repeating geometry models the support Each small-scale geometry is modeled under uniaxial “Effective” properties are computed relative to those of “Effective” properties are validated with 4-point INTRODUCTION
100

Total Equivalent Stiffness
 δ

A small-scale repeating geometry models the support 

structure.

Each small-scale geometry is modeled under uniaxial 

tension using FEA.

“Effective” properties are computed relative to those of 

a uniformly thick solid:

“Effective” properties are validated with 4-point 

bending of representative samples.

The FlexCellTM is the latest generation electrolyte-

supported planar SOFC from NexTech Materials  Ltd. 60
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increased active supported planar SOFC from NexTech Materials  Ltd.
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 Specimen 
Geometry %AA %Eeq

Predicted 
Modulus

(GPa)

Experimental 
Modulus

(GPa)

model.

% Active Area:

Structure (GPa) (GPa)

Large Hexes 57 39 79.6 73.3

Small Hexes 39 52 106.4 108.6
78 small-scale geometries were selected by varying: Principal stress  

distribution 

SOFC Construction and Operation

Small Hexes 39 52 106.4 108.6

Small Circles 36 55 111.7 112.1

No Hexes 0 100 204.6 202.2

1. Width of each hex, w (mm)

2. Space between hexes, b (mm)

3. Radius of corner fillets, r (mm)

distribution 

resulting from 

edge 

Magnification of 

membrane stress 

with increased SOFC Construction and Operation 3. Radius of corner fillets, r (mm)

4. Thickness of membrane, tm (mm)

5. Thickness of support mesh, ts (mm)

edge 

displacement.
with increased 

active area. The “effective” properties can be used for larger 

scale  modeling.

FlexCellTM Innovation: A honeycomb-type structure 

provides a thicker support mesh with thin active area.

5. Thickness of support mesh, ts (mm) scale  modeling.

Large-scale geometries are modeled  using “effective” Large-scale geometry is modeled with shell elements The relatively stiffer ribs appear to carry more stress, Based on initial findings, recommendations are made provides a thicker support mesh with thin active area. Large-scale geometries are modeled  using “effective” 

mechanical properties in active regions.

Large-scale geometry is modeled with shell elements 

under structural and thermal loading using FEA.

The relatively stiffer ribs appear to carry more stress, 

but unlike the active area the stresses are unmagnified.

Based on initial findings, recommendations are made 

for the development of even larger cells.
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color-coded to 
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Whole

Electrolyte
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material types.
The ribs also reduce out-of-plane  displacements.

Honeycomb structure in a FlexCellTM 

Electrolyte

Stress response 

The ribs also reduce out-of-plane  displacements.

Narrow side rib

Rounded fillet to 

reduce thermal 

Thin regions are more electro-chemically efficient for 

Honeycomb structure in a FlexCellTM 

1st principal stress contour plot of ultra large FlexCell 

with widened rib

Each large-scale geometry was selected by varying: 

1. Stiffness applied to active regions, Eeq (GPa)

Stress response 

to horizontal 

temperature 

Narrow side rib
reduce thermal 

stress

Thin regions are more electro-chemically efficient for 

improved performance.

1. Stiffness applied to active regions, Eeq (GPa)

2. Support rib and frame dimensions, (mm)

3. Radius of corner fillets, (mm)

temperature 

gradient. Large cells which are mechanically robust have a 

higher power density..improved performance.

An individual cell model is used to evaluate the Current-collecting, corrugated foams in the cell transfer Foam properties in the model are changed over several Cell models consider variations in foam geometry to 

3. Radius of corner fillets, (mm) higher power density..

An individual cell model is used to evaluate the 

electrolyte within the context of a stack.

Current-collecting, corrugated foams in the cell transfer 

loads onto the electrolyte.

Foam properties in the model are changed over several 

iterations until the load-displacement behavior 

matches the experimental data.

Cell models consider variations in foam geometry to 

characterize stress distributions in electrolytes.

matches the experimental data.

Mechanical 

properties of an 

Brittle electrolytes can withstand considerable bending
Load 

The load-displacement behavior of foam compressed in 

properties of an 

ideal foam.

Thick regions support against mechanical damage 

Brittle electrolytes can withstand considerable bending
Load 

Transfer
The load-displacement behavior of foam compressed in 

a load frame is reproduced in a contact model.

Thick regions support against mechanical damage 

during manufacturing, assembly, and operation.

Transfer

Changes in foam geometry may reduce loads 

Load frame data. Contact simulation.Schematic of a planar SOFC stack assembly. Material property inputs. Load-displacement results.

Changes in foam geometry may reduce loads 

(and therefore stresses) imposed on electrolyte.


