Recent Progress in Developing Reliable, Cost Effective Fuel Reformers & Fuel Processors

Subir Roychoudhury, Christian Junaedi, Jeff Weissman, Saurabh Vilekar

DOE NETL Pyrochlore Catalyst Synthesis & Coating

- Prepared as powder according to NETL method
 - Reproducible performance demonstrated at NETL
- XRD analysis on as prepared material corresponds closely to pyrochlor PXRD pattern
- Detailed characterization at PNNL-EMSL via Rapid Access
 - Relate Rh structural parameters & particle morphology to performance & durability

Catalytic Partial Oxidation Reactor (Waterless CPOX)

• Operates at $O/C \approx IAnd S/C = 0$

Collaboration w. automotive OEM

High H₂ selectivity

Direct partial oxidation (w/o deep oxidation)

• Startup time < I min (ambient to steady state).

Reformate composition (mole %) for operation w. distillate fuel:

0.3 0.0 0.1

5 kWth CPOX reactor w. fuel/air injector, igniter

- Trends in lattice parameter vs. Rh loading

Ambient Air In

Rh Pyrochlore Coating Development & Test Results

- Optimize coating of 5 wt.% Rh pyrochlore catalyst on PCI's Microlith substrate.
- Maximize loading, dispersion & adhesion; minimize cost & processing time.
- To date, 4 iterations have been performed by adjusting washcoat formulation & catalyst application method.
- Catalyst performance tests were performed with 1.6-ppm sulfur JP 5 (similar aromatics w. Tier II Diesel).

Iteration #	Conversion to CIs (%)	LHV-based Efficiency (%)	Ethane + Ethylene (ppmv, wet basis)	Propane + Propylene (ppmv, wet basis)
I	94.1	73.9	1175	260
2	97.I	75.5	1100	290
3	~100	79.3	634	64
4	~100	78.8	198	0
5*	100	85	0	0

*Target values as achieved by non-pyrochlore catalyst

• Increased fuel conversion to CI products (i.e., CO, CO $_2$, CH $_4$) & reforming efficiency.

T Profile from CPOX Test (w. Distillate Fuel containing Sulfur)

CPOX reactor peak temperature profile vs. time

- Catalyst durability test w. distillate fuel containing sulfur.
- Stable T observed for 900 hrs without catalyst replacement or regeneration.
- Minimal change in Oxygen-to-carbon (O/C) ratio during the test.

#	to CIs (%)	Efficiency (%)	(ppmv, wet basis)	(ppmv, wet basis)
I	94.1	73.9	1175	260
2	97.I	75.5	1100	290
3	~100	79.3	634	64
4	~100	78.8	198	0
5*	100	85	0	0

• Reduced coke precursors (i.e., higher hydrocarbons, including C2s & C3s) from > 1000 ppm $_{\rm v}$ to 200 ppm $_{\rm v}$

Autothermal Reformer (ATR) Schematic

ATR Scale-up: 1 MWth ATR System

Modular, 250 kW_e Fuel Processing System consisting of fuel/air/steam injector, ATR steam generator hex, and downstream sulfur clean-up

CPOX Scale-up 5 MWth Natural Gas Reformer

5 MWth reactor to reform natural gas to produce syngas

Prototype tested & delivered

- Performance testing successfully completed.
- 1000 hrs of sub-scale durability completed (Target 8000 hrs).

Heat-Integrated 3 kWth Steam Reformer (CSR) Prototype

Performance Summary:

Liquid Fuel in

Reformate

 $(H_2 + CO)$ Out

- Include exothermic (burner) & endothermic (steam reformer) sections
- Up to 3 kWth CSR operation
- Prototype size: 12 inches long, 1.5 inches diameter
- 500 hr operation at S/C of 3.0 with low sulfur fuel without coke formation • Product composition in good agreement with thermodynamic prediction
- ~10x higher overall heat transfer coefficient vs. conventional HEX
- Fuels tested: n-C12 & synfuel S-8

500-hr Durability of Heat-Integrated CSR

 Operation w. distillate fuel containing 2-5 ppm_w Sulfur

	Exptl Product Mol%, St/C=3.0, P = I atm	Equilibrium Mol%, St/C=3.0, I atm, 650?C
H ₂	69-71	70.8
со	10.7-14.0	11.8
CO ₂	14.0-19.3	15.6
CH₄	0.8-4.0	1.9
LHV-based efficiency (w. CH ₄)	~119% (synfuel)	115%

CSR Scale-up: 7.5 kWth Operating at 10 atm

7.5 KWth CSR for up to 10 atm operation w. low sulfur diesel

- CSR prototype consists of catalytic exothermic (burner), catalytic endothermic (CSR), HEX & mixer.
- Catalytic burner instead of flame -stabilized burner increases thermal uniformity, distribution, durability & control.

