Direct Methanol Fuel Cell Operating With Concentrated Methanol John Staser¹, Corey Grice¹, Mohammad Taslim², Mehdi Abedi² ¹NuVant Systems, Inc., ²Northeastern University

Mass Transport Through Porous Media Fuel Consumption rate $Q = \frac{I}{n \cdot F} \cdot \frac{M}{\rho}$ Fluid (MeOH) w/ viscosity μ Porous plate w/ Permeability k p_a c_a Q = volumetric flowrate (m³/sec)I = operating current (Amps) にいた方式できる n = nr. of electrons exchanged (eq/mole) p_b c_b F = Faraday's number (C/eq) M = molecular weight of fuel (gm/mole) ρ = fuel density (gm/mL) Fluid (MeOH) w/ Flowrate Q

Transport in the **porous layer**

Matching the rate of discharge of fuel through the porous structure with the fuel consumption at the DMFC anode reduces the methanol crossover

Diffuser Construction Integrated flow field – diffusion layer (IFDL) Posts enable form spreading evacua and electrical ports contact ⁻uel Inlet Zon

Experimental

Cells are operated with continuous anode flow

Energy	15.47
GFED	70
%U	58
Eavg	0.4
Pavg	3
Pmax	3
Ravg	

Single Cell Performance Improvement Target Goal: 1000 Wh/L

August 2010

-		-	-	_	-		~
]					-	0	N
7						9	
	U		U				
]							
٦							
-				Ц	Ц		
		U					
						5	
٦							
7		-	-				
-							
1	U						
כ							
ו							
٦							
				Ц			
				100			
_							
					0		
1							
						0	-
1955	-		-	-	_	2	1

