

1000-hr Demonstration of Pyrochlore Catalyst for Oxidative Steam Reforming of Pump Diesel

Graded-Bed Approach

Carnegie Mellon

Calculated from Total Carbon measured for 100%Ni-PC and Ru-PC

Diesel Fuel Reforming using Pyrochlore Catalyst Collaboration with Industrial Partner

NETL's Pyrochlore Catalyst in Powder Form

Monolith Coated by NexTech

Low-temperature plasma capability at NETL

- reactions at low gas temperatures
- NETL capabilities: 15-30kV AC/DC (0-400W) plasmas, two populations of excited particles

Reverse vortex stabilized gliding arc plasma

Fabrication of Catalyst into a Commercially Viable Structure

- Powder Catalyst Validation:
- Activity tests: TPO (carbon formation)
- Bulk characterization ICP, XRD Surface characterization – XPS, TPR, H2-chemisorption
- Preliminary Tests on Coated Monolith

Microlith® Technology by PCI

• Low-temperature plasmas create high energy free electrons that can excite internal energy states of reactants (vibrational, electronic) and stimulate non-thermodynamically favorable

Plasmas also create aggressive chemical radicals & charged species that can accelerate the kinetics of a chemical reaction while reducing the activation energy cost for the reaction to proceed

continuous flow plasma reactors, Spectroscopic tools to study of

Excited molecular states stimulated by blasma

Monolith Characterization

Corner coating thickness: 53 ± 13 microns

- Areas for Future Research include: Process studies to optimize overall system efficiency
- Catalyst regeneration to minimize catalyst replacement costs
- Use of potassium hydroxide for combined methanation and carbon dioxide capture, with regeneration of KOH

Oxide-based Catalyst Systems (ABO)

Pyrochlores $(A_2B_2O_7)$ are viable reforming catalysts because they exhibit:

- High chemical and thermal stability
- Mechanical strength to accommodate substitutions Active metal can be substituted into B-site to improve
- Substitution with lower valence elements in A-site and
- B-site can create oxygen vacancies, which may increase lattice oxygen-ion mobility to reduce carbon

A structured catalytic surface with nano-sized metallic crystallites that erves as a template to control metallic crystallite size and dispersion.

Pyrochlore Synthesis Methods

Hexaaluminates (AAI₁₂O₁₉): High chemical and thermal

- Mechanical strength to accommodate substitutions
- Active metal can be substituted into Al-site

Dot Map Analysis

Pechini (NETL)

 Good for small scale (lab) •Results in well-mixed. uniform catalyst

•Most active material (1000 h catalyst) Economic scale-up?

Hydrotherma

•Can produce larger batch size •Not able to get Rh into pyrochlore structure.

Pechini.

Solid State Mixing Economical for large

 Requires high temperature and long firing times to form pyrochlore.

 Catalyst uniformity a potential issue.

Conclusions

throughput. Under development

Integrating SOFCs with Catalytic Coal Gasifier Anode Tail Gas Recycling¹

Thijssen, J., "IGFC With Catalytic Hydro-Gasification Using Anode Exhaust," Presentation at NETL, July 13, 2009. ²Includes cost of 20% catalyst loss and replacement

- SOFC-based APUs for commercial diesel trucks is an excellent market entry technology
- Reforming catalyst with long-term stability and performance is critical for successful demonstration of transportation application
- Pyrochlore catalyst has high thermal stability and other enhanced properties that make it effective reforming catalyst Pyrochlore catalyst on oxygen-conducting support successfully
- reformed pump diesel for 1000-hr
- Optimized pyrochlore catalyst applied to commercially representative structured supports
- Preliminary performance of catalyst monolith demonstrated on pump diesel and biodiesel fuels under oxidative steam reforming
- Preliminary experiments have shown some evidence of reduced carbon formation, however a detailed analysis is currently underway to repeat these findings and understand the mechanisms of RFassisted reforming at various frequencies and power levels
- Non-thermal plasma reforming technology has shown promising results for reforming of complex fuels such as diesel Evaluating molten salt coal gasifier to generate high methane
- content syngas at lower pressures and temperatures

West Virginia University

12th Annual SECA Workshop, Pittsburgh, PA July 26-28, 2011 Dushyant Shekhawat, Dave Berry, Nick Siefert, Dan Haynes, Mark Smith,

Mike Gallagher, Don Floyd, Mike Bergen, and James Spivey (LSU)

batches.

•Activity not as good as

 \bigcirc oxygen Pyrochlore - A₂B₂O₇ **Combustion Method** Potential for continuous high Material produced should be similar to Pechini.