

Time-dependent stability of SOFC activated by nano-sized cathode electrocatalyst

Shiwoo Lee, Nicholas Miller, Kirk Gerdes, and A. Manivannan

U.S. Dept. of Energy, National Energy Technology Laboratory, Morgantown, WV 26508 (*leesn@netl.doe.gov*)

Introduction

Cathode Infiltration with electrocatalysts

- ⇒Dramatic decrease in electrode overpotential due to enhanced oxygen reduction reaction.
- * Shiwoo Lee et al., J. Electrochem. Soc., 158 (2011) B735.

But, long-term stability is questionable... because of electrocatalysts'

1) Nanometer size (= small curvature radius)

Multi-cell array (MCA)

Pure H₂

2000 sccm for cathode

2000 sccm for anode

(12 cells)

Glass

Mesh

850C (30 min) aging

before 750C operation

2) Instability (decomposition or interaction)

Theme of this study

Fuel composition

Gas flow rate

Sealing material

Current collectors

⇒ Time-dependent stability of infiltrated cathode

97% H₂ + 3% H₂O

400 sccm for cathode

400 sccm for anode

Paste

Direct heating to 750C

Features of this study

LSCF cathode layer **SDC-LSCF** functional layer $(A=2.0 cm^2, t=50 \mu m)$ $(A=2.0 \text{ cm}^2, t=10 \mu\text{m})$ **YSZ** electrolyte Ni-YSZ anode

1) Comparative study

Heating schedule commercial baseline cells (MSRI Co.) vs. LSCo-infiltrated cells

- 2) Cathode backbone: composite of SDC-LSCF
- 3) Multiple cell tests for statistical reliability utilizing single cell test stands (SCS) or multi cell array (MCA)
- 4) Impedance analysis for degradation mechanism investigation

Multiple cell tests for 200 h

Fig. Polarization resistance (Rp) variation with time (DC 0.5 A/cm²)

(a) Rp obtained at SCS (average value at the operation of 24 h)

Baseline cell = 0.14 ohmcm² 29% decrease in Rp by infiltration (= 35% increase in power density under 0.7V, Infiltrated cell = 0.10 ohmcm² assuming Ro=0.2 ohmcm²)

(b) Rp obtained at MCA, (average value at the operation of 24 h) Baseline cell = 0.20 ohmcm² 25% decrease in Rp by infiltration Infiltrated cell = 0.15 ohmcm²

Time-dependent stability for 200 h:

- (1) Regardless of test stands, cathode was activated by LSCo infiltration.
- (2) All the tested cells showed Rp increase with operation time.
- (3) No accelerated degradation was shown for infiltrated cells.

1500 h test for selected cells

Fig. (a) Rp and (b) Ro variation of the selected cells tested 1500 h

- > Ro is not supposed to be affected by infiltration > Rp vs. time (1500 h): power law relationship
 - $y = 0.1174 x^{0.0409}$ for Baseline cell (SCS-#2) $y = 0.0898 x^{0.0619}$ for LSCo infiltrated cell (SCS-#2)

Time-dependent stability for 1500 h:

- (1) No accelerated degradation by infiltration was confirmed.
- (2) 70% of Rp increase over 1500 h occurs within initial 200 h operation.

Impedance Study

Equivalent circuit used for fitting R0 R1 R2 R3 Q2 Q3 Q3 >> (1) Ro: ohmic resistance

- (2) R1Q1: High Frequency (HF, $> 2x10^2$ Hz): charge transfer / bulk diffusion
- (3) R2Q2: Intermediate Frequency (MF, 2x10¹ 2x10² Hz): incorporation of oxygen molecule into cathode
- (4) R3Q3: Low Frequency (LF, $10^{0} 2x10^{1}$ Hz): seems to be related to anode reactions
- (5) < 10^o Hz: gas diffusion polarization

Characteristic appearance of a new feature in the MF range with a summit frequency of 20-200 Hz, while Ro, R1 and R3 were nearly constant.

Bode plots confirm that Rp change occurs mostly during initial 200 h.

Bode plot change over 1500 h

(1) SrZrO₃ formation

Baseline cell tested for 1500 h

Microstructure analysis

major elements at the interface of YSZ electrolyte and SDC interlayer.

SrZrO₃ formation may be one of the reasons of cathode degradation with time for both baseline cell and infiltrated cell.

(2) Coarsening

- Overall microstructural changes with operation time seem to be minimal.
- > There is no clear evidence of particle coarsening. (loss of surface area).
- > Particle wetting behavior on backbone cathode needs to be considered seriously because of its high contribution to cathode microstructure.

Conclusion

- ✓ Long-term stability of infiltrated cells has been investigated systematically utilizing (1) commercial cells with composite cathode as baseline and (2) impedance spectrometry.
- ✓ There was virtually no difference in Rp degradation behavior between the two cells, baseline cell and LSCoinfiltrated cell, tested for 1500 h.
- ✓ Most of Rp degradation happened during initial a few hundred hours of operation.
- ✓ Intermediate frequency (MF) arc has been mostly affected by time-dependent degradation for both cells tested for 1500 h.
- ✓ SrZrO₃ formation in spite of SDC interlayer seems to be one of the reasons of cathode degradation.
- ✓ Conclusively, there was no accelerated degradation by nano-sized LSCo electrocatalyst.

University of Pittsburgh WirginiaTech WestVirginiaUniversity

