Manufacturing Analysis of SOFC Interconnect Coating Processes

M. Seabaugh*, M. Beachy, S. Ibanez, R. Kimbrell, M. Day, L. Thrun and S. Swartz

11th Annual SECA Workshop, Pittsburgh, PA July 28, 2010

Cost-Effective IC Coating Process Development

- Objectives: To Determine---
 - Manufacturing cost for 400MW/year interconnect coatings. (\$5-7 each at 400 MW)
 - What manufacturing route(s) present the most costeffective and technically feasible IC coating.
 - Whether MCO, MCO-REE or other coatings present the best opportunities for commercialization.

Conclusions

- Aerosol is cost effective versus other approaches.
 - At High Production Volume, \$1.65 per 625 cm² plate
 - Low Capital Investment Compared to Competing Methods
- Opportunities for cost reduction with lower cost materials and simplified processes.
 - Coating Thickness Can Be Further Reduced
 - Alternative Materials Can Cut High Volume Costs
- MCO and Perovskite aerosol coatings stable and high performance
 - Lifetimes >1500 hours demonstrated in Phase I
 - ASR values < 0.05 ohm-cm² for coated IC Components after 1000 hour tests w/ thermal cycing

Commercialization

- Coating processes are scaled to large component sizes
 - Up to 1200 cm² Area Components
 - Masking, Dual Coatings, High Relief Surfaces Demonstrated
- Aerosol production capacity (# of parts) easily scaled
 - Spray Coating Times are Short
 - Furnace Requirements Easily Met by Conventional Equipment
- Immediate and Future Products
 - Value-added paints, inks and spray suspensions
 - Interconnect coating services
 - Interconnect manufacturing services
- Intellectual Property Protection and Access
 - Filed Provisional Patents on Perovskite Coatings
 - Licensing Strategy in Place to Provide Clients Freedom to Operate

NexTech Materials, Ltd.

- Founded in 1994
- Currently 35 full-time employees
- Technology Developer advanced ceramics, electrochemical devices
- Product Developer fuel cells, catalysts and sensors
- Manufacturer/Distributor fuel cells and related products
- Service Provider—Materials and Processes Tailored for Client

Commercial Services accelerates client success by direct collaboration in materials, process and component development.

Commercial Service Examples

Electrolyte Powders Tailored Properties

Tape Casting

Electrode Powders Tailored Current Collect

Custom Cell Solution

IC Protective Powder

Custom Spray
Process

Tailored Interconnects

Summary of Coating Cost Analyses

Comparison of Prevalent IC Coating Technologies (Estimated at 400 MW/year production)

Metric/Technique	Plasma	IBED	Electroplating	EPD	ASD
Coating Density	Intermed.	Excel.	High	Intermed.	Intermed.
Coating Thickness (µm)	> 20	< 5	1-10	5-20	5-20
Composition Flexibility	Good	Low	Limited	Excellent	Excellent
Capital Cost (\$)	3.1M	3.7M	2.5M	2.2M	1.5M
Operating Cost (\$)	1.1M	1.2M	1.6M	1.5M	1.5M
Coating Cost per interconnect (\$/part)	\$2.61	\$2.03	\$1.95	\$1.93	\$1.65
Coating Cost per Kilowatt (\$/kW)	\$10.44	\$8.12	\$7.80	\$7.72	\$6.60

Breakdown of Coated IC Costs

3%

2%

Breakdown of Coated IC Cost: Aerosol Deposition

- Costs Modeled for 400MW
- 625 cm² IC Area
- Stamped 0.5 mm thick IC
- \$8.80/kg Steel Cost

MCO Materials Synthesis

Material	$Mn_{1.5}Co_{1.5}O_{4-\delta}$	MnCo ₂ O _{4-δ}	
CTE (RT-1000°C)	11.4 ppm/°C*	13.5 ppm/°C**	
Bulk Conductivity	~60 S/cm, 800°C†	36 S/cm, 800°C++	
Surface Area	8-14 m ² /g	8-14 m²/g	
XRD	Mixed (Cub +Tet) Spinel 18-0408 MnCo₂O₁ ▼ 23-1237 MnCo₂O₁ 20 25 30 35 40 45 50 55 60 degrees 20	Synthesizing 2. Scaling Production of the second se	

^{*} Yang et al, Electrochem. and Sol. State Lett. 8 A168-A170 (2005)

^{**} Kiefer et al, 26th Riso Int. Symposium on Mat. Sci., Solid State Electrochemistry p 261-266

[†]Chen et al, Solid State Ionics, 176 (5-6) 425-33 (2005)

^{††}Yang et al, Int. J. of Hydrogen Energy, 32 (2007), 3648-3654

Examples of Coated Components

Extension to Cathode Current Collection

Microstructure of $Mn_{1.5}Co_{1.5}O_{4-\delta}$ Coatings

Initial Performance MCO v. Uncoated

Thermal Cycling MCO v. Uncoated

Lifetime Stability MCO v. Uncoated

6 μm-

SEM Cross Sections

12 µm

Impact of Coating Thickness Performance

Impact of Coating Thickness Manufacturing Cost

Perovskite Coating

Initial Performance Perovskite v. MCO & Uncoated

Thermal Cycling Perovskite v. MCO & Uncoated

Lifetime Stability Perovskite v. MCO & Uncoated

EDAX of Perovskite Tested for 1000h, 800°C, 0.5A/cm²

Impact on Materials Selection Manufacturing Cost

Future Work

- Commercialization with Clients
 - Coating Services
 - Coating Value Added Materials
- Reducing Process Costs
 - Integration of Process into IC Manufacturing Cycles
 - Simplifying Process Cycles
 - Reducing Process Cycle Times
- Validating Materials Cost Reduction Strategies
 - Long Term Testing
 - Short Stack Validation

Acknowledgements

- Clients, Colleagues and Collaborators
- U.S. Department of Energy
 - DE-PS02-08ER08-34,
 - Briggs White, Project Manager
- State of Ohio Third Frontier Program

For More Information:

Matthew Seabaugh (614) 842-6606 extension 107

m.seabaugh@nextechmaterials.com

www.nextechmaterials.com