

Diesel Fuel Processing: Water Neutrality, Sulfur Cleanup, Coke Minimization

DOE Phase II SBIR (COTR: Joe Stoffa)

Christian Junaedi, Jeff Weissman, Subir Roychoudhury

Precision Combustion, Inc. (PCI), North Haven, CT

11th Annual SECA Workshop Pittsburgh, PA; July 29, 2010

Precision Combustion, Inc.

- Develops advanced catalytic reactors & systems; manufactures limited-volume catalytic products
- Two major platform technologies
 - RCL® catalytic combustors for gas turbines and downhole applications
 - Microlith® catalytic reactors for multiple markets

PCI Technology Overview

- RCL® Catalytic Combustion
 - Best New Technology Award 2006 IGTI, ASME
 - Full scale GT engine testing underway at OEM's

- Microlith® Catalytic Reactors Tibbetts & Army Innovation awards
 - Catalytic Burners & Converters
 JP-8/Diesel/H₂/anode gas burners
 Stirling Engine Burners (as low as 50 We)
 Catalytic after-treatment automotives

ATR, Waterless CPOX & CSR for liquid and gaseous fuels (e.g. JP-8, diesel, methane, propane, biofuels)
Reformers for SOFC, PEM & MCFC applications
I - 250 kWe Fuel processing Systems

Regenerable Sorption Reactors:

Chem-bio filters

Air revitalization for long-duration manned spaceflight

Reforming Areas Under Development At PCI

Reforming Processes:

Auto-thermal reforming Catalytic Partial Oxidation Steam Reforming

Reforming reactors:

WGSR, PROX

Burners (startup, AGB, purge)

Scales: 50 We – 250 kWe

Fuels:

Liquids: Diesel, JP-8, Jet-A, E-85 FT fuels, Methanol, Gasoline Gases: Natural Gas, Propane

BOP:

Pumps, Blowers, Nozzles
Igniters, HX, Steam generation,
F/A/S mixing, Controls
Sulfur Cleanup, System Integration

"Put The Fuel in Fuel Cells"

Microlith® Technology

Small, durable, catalytically coated metal mesh with very high surface area

Continuous catalyst coating line with batched furnace and rigorous QA, QC in place

Microlith® Catalytic Reactors

Ultra compact
Short contact time
Rapid thermal response
High heat & mass transfer
High surface area/unit volume
Low catalyst usage & small size ⇒ Low cost

PCI holds multiple patents on catalyst structure, reaction methods, and apparatus

- Microlith Auto Thermal Reformer (ATR)
 - System layout
 - Water neutrality
 - Condensation
 - Anode Gas Recycle
 - Catalyst sulfur tolerance and sulfur cleanup
 - Coke minimization for operation w. SOFC stacks
- Microlith Waterless Diesel reformer (CPOX)
- Microlith Steam Reformer (CSR)
 - Long term operation w. sulfur containing distillate fuels
- Larger scale reformers w. gaseous/liquid fuels

Integrated Fuel Processor

5 – 10 kW_{th} reformer integrated w. fuel/air/steam injector, igniter, steam generating HX, sulfur trap. Cabinet w. balance of plant components (fuel, water tanks, pumps, contols, power supply, etc.)

Standalone Fuel Processor (HT-PEM/PEM)

25 kW_{th} ATR w. fuel/air/steam injector, igniter, steam generating HX, sulfur trap, WGSR

Standalone Fuel Processor Metrics

- Reforming efficiency: ~85% (ratio of LHV)
- Size: 3 liters; Weight: 5 kg (for 5 kW_{th})
- Operate at low S:C ratios (AGR/water)
- Start up in CPOX (1 min), transition to ATR (7 min)
- Modular, readily-serviceable components
- Stand-alone pumps & blowers implemented
- 12 V battery for startup & controls
- Readily integrated w. SOFC, PEM, H₂ generation systems
- Durability: 1000 hrs w/o failure w. JP-8 (~400 ppm_w sulfur)

Convert JP-8*/Diesel* into sulfur free (< I ppm_v) reformate

Reformer + Stack Interface Testing

JP-8 w. low S (Average ~15 ppm $_{\rm w}$ S); Higher HC's < 20 ppm. Operated with I kW $_{\rm e}$ SOFC stack – Stable Operation w/o coking for I I00 hours

Test Summary

- Automated start, shutdown, load changes
- Closed loop feedback control w. safety interlocks
- DC Gross efficiency of 34% achieved
- Maximum power of I.5 kWe obtained
- On post inspection, no carbon detected

- Microlith Auto Thermal Reformer (ATR)
 - System layout
 - Water neutrality
 - Condensation
 - Anode Gas Recycle
 - Catalyst sulfur tolerance and sulfur cleanup
 - Coke minimization for operation w. SOFC stacks
- Microlith Waterless Diesel reformer (CPOX)
- Microlith Steam Reformer (CSR)
 - Long term operation w. sulfur containing distillate fuels
- Larger scale reformers w. gaseous/liquid fuels

Water Recovery: Direct Anode Recycle (AGR)

- Used surrogate gas mixture to simulate AGR composition and flow rate
 - Assumptions: 60% SOFC Fuel Utilization; 50% AGR split to achieve target O/C and S/C
- Reactor startup under CPOX (waterless); then transitioned to ATR (w. AGR)
- Stable reactor operation w. no temperature excursions
- Successfully demonstrated 50-hr durability of ATR using AGR for water neutral operation
- Test results in good agreement w. thermodynamic equilibrium analysis; no HCs slippage

AGR Approach – T Profile (50-hr Durability Test)

AGR Approach 50-hr Durability Test: Product Composition

Species	Conc. (mole %, dry basis)			
_	50-hr test (average)	ASPEN model		
H ₂	12.4	12.4		
СО	14.8	15.3		
CO ₂	12.6	10.9		
N_2	60.2	61.4		
CH₄	0.02	0		

Water Recovery: Condensation Approach

Required % H₂O recovery is a function of:

- % hydrogen in the hydrocarbon feed
- Reformer product H₂ and H₂O
- Fuel Utilization in the Fuel Cell
- Location of anode gas burner in the system
- Bypass ratio & Recycle ratio
- Ambient conditions

Results from Increasing Condenser Inlet T

- Condenser inlet T was increased from 100 to ~800°C.
- 21°C cooling air, 32.7 mol% H2O, 5 kWth system.
- ~93% water recovery achieved at 800°C.

- Microlith Auto Thermal Reformer (ATR)
 - System layout
 - Water neutrality
 - Condensation
 - Anode Gas Recycle
 - Catalyst sulfur tolerance and sulfur cleanup
 - Coke minimization for operation w. SOFC stacks
- Microlith Waterless Diesel reformer (CPOX)
- Microlith Steam Reformer (CSR)
 - Long term operation w. sulfur containing distillate fuels
- Larger scale reformers w. gaseous/liquid fuels

Effect of 400 ppm_w "Real S" for 1000 hrs

- Stable/complete fuel conversion, Reforming efficiency, H₂+CO mole % over time
- Total organics (primarily C2, C3) <100ppm at end of test.
- Fuel-bound S converted to H_2S and removed (<I ppm) downstream of reforming reactor
- NETL Rh-pyrochlore formulation adapted to Microlith. Significant cost reduction potential identified.

- Microlith Auto Thermal Reformer (ATR)
 - System layout
 - Water neutrality
 - Condensation
 - Anode Gas Recycle
 - Catalyst sulfur tolerance and sulfur cleanup
 - Coke minimization for operation w. SOFC stacks
- Microlith Waterless Diesel reformer (CPOX)
- Microlith Steam Reformer (CSR)
 - Long term operation w. sulfur containing distillate fuels
- Larger scale reformers w. gaseous/liquid fuels

Diesel CPOX Reactor embodiment

~30 cc reactor + fuel/air injector + igniter

Reformate Composition

H ₂	O ₂	N ₂	CH₄	СО	CO ₂	C ₂ H ₄	C ₂ H ₆	Propylene	Propane
22	0.0	54	0.4	21	2	0.3	0.0	0.1	0.0

- Microlith Auto Thermal Reformer (ATR)
 - System layout
 - Water neutrality
 - Condensation
 - Anode Gas Recycle
 - Catalyst sulfur tolerance and sulfur cleanup
 - Coke minimization for operation w. SOFC stacks
- Microlith Waterless Diesel reformer (CPOX)
- Microlith Steam Reformer (CSR)
 - Long term operation w. sulfur containing distillate fuels
- Larger scale reformers w. gaseous/liquid fuels

CSR Reactor 500-hr Durability Test Summary

- 500-hr durability testing successfully completed (one catalyst w/o regeneration/replacement)
- Operated both CSR & burner w. 2 ppm_w S synfuel for 450 hrs (50 hrs w. n-C12)
- Stable CSR reformate w. ~70 mol% H₂ (dry basis)
- Product composition in good agreement with thermodynamic prediction

CSR exptl data at 1.5 kW_{th} and 1 atm vs. thermodynamic equilibrium

	Exptl Product Mol %, S/C=3.0, P = I atm	Equilibrium Mol. %, S/C=3.0, P = I atm
H ₂	69-71	68.5
СО	10.7-14.0	9
CO ₂	14.0-19.3	17.6
CH₄	0.8-4.0	4.9

- Microlith Auto Thermal Reformer (ATR)
 - System layout
 - Water neutrality
 - Condensation
 - Anode Gas Recycle
 - Catalyst sulfur tolerance and sulfur cleanup
 - Coke minimization for operation w. SOFC stacks
- Microlith Waterless Diesel reformer (CPOX)
- Microlith Steam Reformer (CSR)
 - Long term operation w. sulfur containing distillate fuels
- Larger scale reformers w. gaseous/liquid fuels

200 kW_{th} Fuel Processor (ATR + Sulfur Trap + WGSR – ONR)

- Simple layout
- Compact footprint
- ATR Size: 3 liters
- Operating pressure: 7 atm
- Reforming efficiency: 70% 80%
- 1 mkWe scale-up ongoing

Scale-up: 250 kW_e to 5 MWth Fuel Processors

- 250 kW_e Fuel Processing System Design & Hardware consisting of fuel/air/steam injector, ATR, steam generator hex, and downstream sulfur clean-up
- 5 MWth natural gas CPOX hardware

Summary

- Auto Thermal Reforming Diesel:
 - Stable, long-term operation w. SOFC stacks
 - Compact package, w. high reforming efficiency (~85%) with JP-8
 - Water neutral operation verified via AGR and Condensation
 - Stable, long-term operation w. 400 ppm_w fuel sulfur
 - Higher HC's<100 ppm
- Steam reforming:
 - Catalytic ox. & endothermic design w. high heat flux compact reactor
 - Stable, long-term operation w. distillate fuels (S-8)
 - Sulfur tolerance up to 25 ppm_w (no degradation over 50 hrs.)
- Catalytic Partial Oxidation (waterless) *diesel*:
 - Stable, long-term operation in a compact package.
- Scale-up:
 - 200 kW_{th} to 5 MW_{th} demonstrated w. liquid & gaseous fuels

Acknowledgment

We are grateful to the DOE for their support, And

The engineers and technicians at PCI.

