Development of SOFC Cathodes

John S. Hardy, Xiao-Dong Zhou*, Jared W. Templeton, Zigui Lu, Jeffry W. Stevenson

* Now at the University of South Carolina

July 27-29, 2010 11th Annual SECA Workshop Pittsburgh, PA

FY10 Research Topics in the Cathode Sub-task

- Importance of Cathode Sintering Temperature Optimization for Cell Performance & Stability
- Enhanced Densification of the SDC Interlayer
- Concentration Polarization in LSCF Cathodes
- Effects of Contamination from Sealing Glass Volatiles on LSM & LSCF Cathodes
- Capability Development: In-situ XRD of an Operating SOFC Cathode*
- Effect of A-site Stoichiometry on LSCF Cathode Performance

* The focus of this talk

Objectives

- To develop the capability to perform in-situ XRD measurements on operating SOFC cathodes, including:
 - A test fixture compatible with the XRD.
 - A cell assembly suitable for simultaneous operation and XRD measurements.
- To demonstrate the viability of performing in-situ XRD of working cathodes.

Potential Benefits of *In-situ* XRD Studies

- In-situ monitoring of the following during cell operation:
 - Phase composition
 - Phase transitions
 - Lattice strain
 - Crystallite size
- ► The above measurements can be made to determine:
 - How LSCF is changing over time at constant current as it degrades
 - The effects of operating parameters such as bias voltage, temperature, and oxygen-content/utilization on the cathode
 - The effects of contaminants on LSCF

Instrument & Apparatus

Bruker D8 Advance XRD...

SOFC Test Fixture for **XRD**

Small-scale button cell

LSCF Cathode under Au mesh & paste current collector

SDC Interlayer

Anode-supported electrolyte bilayer

Challenges

- Sealing
 - Should avoid burning out organics in XRD heating chamber
 - Modifications required for a load to be applied during sealing (Additional Consideration: Load must not shield cathode from x-rays)

Comparison of Candidate Sealing Materials

_	
Aremco Ceramabond 569 & 685	PNNL G-18 Barium Calcium Aluminosilicate Glass
Organics removed during 100C curing heat treatment	Organics must be burned out at 500-600C
Bond is strong enough for handling after curing	Not much strength for handling after burn out
Seals reliably without a load	Hit or miss on sealing without a load
Not a great seal (typical OCV ~1.04 V)	Good seal (typical OCV ~1.1 V)

Cathode Current Collection

Require adequate current collection without shielding cathode from impinging x-rays

Experimental Parameters

- XRD
 - All XRD scans cover a 2θ range of 25 85°
 - Room temperature scans:
 - 0.01° steps for 2 seconds/step (~3.5 hour scan)
 - Elevated temperature scans
 - 10 minute scans to be repeated through isothermal dwell
 - 0.05° steps for 0.43 seconds/step
 - Higher resolution scans will be run intermittently
 - ◆ 0.01° steps for 0.52 seconds/step (~1 hour scan)
 - These scans will be run in sets of three back-to-back
- Cell Operation Targets
 - 750°C
 - Constant Current approximating 0.8 V operation
 - Air
 - \blacksquare H₂ with 3% H₂O

Initial Cell Test Results

Seal Material:	Current Collector	ocv
Ceramabond	Fine Au mesh rolled to <40 µm thick with gold paste contact points	1.04 V

Pacific Northwest

NATIONAL LABORATORY

Cell Test Results – Changed Current Collector

Seal Material:	Current Collector	ocv
Ceramabond	Full coverage with thin Au screen print. Gold mesh ring contacting perimeter of print.	1.03 V

Cell Test Results – Sealing Problems

Seal Material:	Current Collector	ocv	
Ceramabond	Gold mesh ring around perimeter of cathode with gold paste contact points	0.850 V	
G-18 Paste around edge of cell and tube	Gold mesh ring around perimeter of cathode with gold paste contact points	0.07 V, G-18 melted and ran down tube	Subsequent tests found that the cell was 50°C hotter than expected
G-18 Paste with Ceramabond painted over G-18	Gold mesh ring around perimeter of cathode with gold paste contact points	0.60 V	
G-18 Paste with Ceramabond painted over it and G-18 tape between cell and tube	Gold mesh ring around perimeter of cathode with gold paste contact points	1.01 V but not stable	
G-18 Paste and G-18 tape	Gold mesh ring around perimeter of cathode with gold paste contact points	Not Measured – No bubbling in exhaust line	Water was condensing & plugging the vent line

- In subsequent tests, target temperatures were adjusted to compensate for ΔT.
- Vent line was blown out and a moisture trap installed to keep line clear.

Successfully Operated Cell and Measured Strong Cathode Diffraction Peaks

Seal Material:	Current Collector	OCV
Ceramabond	Gold mesh ring around perimeter of cathode with gold paste contact points	1.04 V

Further Improvements Underway

- Modify the test fixture to add spring loading to facilitate use of G-18 glass seal to improve OCV.
- ► Add air delivery tube that blows incoming air directly on the cathode to decrease concentration polarization resistance.
- Fabricate an insert that will narrow the x-ray beam to impinge only on the cathode and not the surrounding current collector for a cleaner XRD pattern.

Duplicate of XRD Cell in Button Cell Test Stand

- ▶ 0.5 cm² cathode printed on standard 25 mm dia button cell.
- Au current collector only around perimeter of cell.
- G-18 seal.
- Incoming air impinges directly on cathode.

- High power density means:
 - Perimeter current collector is adequate
 - Planned improvements should have significant impact of performance of cells in XRD test fixture.

Conclusions

- Developed a new resource to aid in studying SOFC cathodes.
- Successfully operated an SOFC while simultaneously performing XRD on the cathode.
- Have identified further improvements & demonstrated their potential benefits.

Acknowledgements

- The summarized work was funded under the U.S. Department of Energy's Solid State Energy Conversion Alliance (SECA) Core Technology Program.
- Helpful Discussion and Guidance from NETL

