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Synchrotron Studies - Goals and Objectives

Real-time,
in situ x-
ray
analysis
techniques

Develop molecular-level models of SOFC
cathode materials to stimulate rational design
and development of high-performance cathode

materials.

Solid oxide
fuel cell
materials
issues

= |n Situ Controlled Atmosphere Studies
— Equilibrium structure in controlled atmosphere (e.g. variable pO,).
— ldentify driving forces for structural and chemical rearrangement

= In Situ Electrochemical Studies
— Determine dynamic changes of cathode occurring in SOFC half-cell
— Correlate with equilibrium structures and ex situ measurements

= Bridging between Synchrotron Measurements and Fuel Cells

— Compare model systems with “real” systems
— Correlate with ex situ measurements and performance data
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Correlate performance with atomic-scale processes

Octahedral
Epitaxial distortion )
Strain
g . Electrical
) ‘ urtace conductivity
reconstruction
Cation
stoichiometry .
Surface
Segregation
. Catalytic
Efficiency
B-site
poO,, T ~ valence
lonic
conductivity
Oxygen
Experimental Variables stoichiometry

Performance

Atomic/chemical changes
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Approach

= LSM, LSC and LSCF epitaxial films grown by Pulsed
Laser Deposition (PLD) at Carnegie Mellon
University

—Growth: 750°C, 50 mTorr O,, La, ,Sr,3sMn0O;,
La, ;Sr,5C00; and La, (Sr, ,Co,4,Fe 504

—Cooled in 300 Torr pO,

—(001) SrTiO; (STO), (110) NdGaO, (NGO) & DyScO,
(DSO) substrates provide different epitaxial strain

conditions : \
—Yittria-Stabilized Zirconia (YSZ) (111) and (001) single ® Portable environmental
crystal substrates for electrochemical measurements chamber; mounts on 6-circle
) _ diffractometer @ APS Sectors 12
" |nsitu synchrotron X-ray studies or 20
—Probes atomic-scale processes during realistic SOFC ® Base pressure ~107 Torr; pO,
conditions control by precise mixing of

purified gases; monitor with RGA
24 keV x-rays
T<1000°C

—Studies performed at the Advanced Photon Source

—Total reflection x-ray fluorescence (TXRF) to determine
surface composition

—Grazing incidence & high angle diffraction to
determine surface and film structure
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X-Rays, Grazing Incidence and Surface Sensitivity

Penetration depth is tunable as
from =20A to microns
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Couple grazing incidence with x-ray scattering
and spectroscopy techniques to create surface
sensitivity.
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Reciprocal Space Mapping using Grazing-Incidence Scattering

= Use area detector and repeated theta scans to rapidly map reciprocal space
volumes (e.g. 30 seconds per map)
= @Grazing incidence gives sensitivity to thin films (1OL) CTR
=  Allows real-time studies during growth
CCD detector

(00L) CTR

Ewald
Sphere

(a) (b)
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Typical X-Ray Measurements

Example from La, Sr, ,Co, ,Fe, ;O; Studies

= Composition fluctuations: Strontium surface segregation?
— Total reflection x-ray fluorescence (TXRF)

* Chemistry induced ordering: Surface reconstructions?

— G@Grazing incidence x-ray diffraction

Are there structural changes with pO,?
— Diffraction, reflectivity

Chemical changes with pO,?
— Resonant scattering techniques
— X-ray absorption spectroscopy (XANES)
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Why look for segregation?

Structure of surfaces are crucial for determining catalytic

performance.
= La,,Sr,MnO, surfaces tend to be polar.

LSM Pseudocubic Unit Cell

La0.75r0.3Mn0O3 (001)

| 30.75r0.30 (+07)

MNO2(07) e

1 20.7Sr0.3Q (+0.7) =
MnQ2(0.7)

Polar surfaces are not stable!
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Strontium surface segregation: previous results

B Multiple reports of strontium surface segregation in LSMO using

UHV techniques.

(Bertacco Sur. Sci. 2002; Dulli et. al. PRB, 2001; Caillol et. al. App. Sur. Sci. 2007; de
Jong et. al. J. App. Phys. 2003; Kumigashira et. al. APL 2003; Ponce App. Cat. B 2000;
Wau et. al. J. Phys. D 2007)

B Some reports of concurrent Mn valence change near surface.
(de Jong et. al. PRB 2005, 2007)

B Recent room-temperature diffraction by Herger et. al. (PRB, 2007)
confirms this picture.

All of these measurements were

done in non-equilibrium conditions.
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Total Reflection X-Ray Fluorescence
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pO, Dependence of Sr Surface Segregation

= Observe that Sr segregation depends on
both T and pO,

— plot shows average Sr composition in ~3 nm surface
region (bulk composition = 0.3)

= Charged vacancies are often not
considered in surface segregation
studies. The concentration of these
defects depends strongly on temperature
and pO,.

= A gradient of V,°* near the surface could
drive Sr segregation.

— Lowering pO, increases the concentration of V,°* at the
surface.

— V" have a net +2 charge; substituting Sr for La results in
net -1 charge

— Segregation of strontium ions can provide necessary
charge compensation in the surface region.

X, (averaged over top 2 nm)

20 nm thickness La, ,Sr, ;MnQO,

0.65
06k -e- 300°C
500°C
1 T - 600°C
0.55¢ — 700°C
- 900°C
0.5
045+t
04} I
035}
Bulk Concentration, xg, = 0.3
] J
0 25 50 75 100 125 150
pO, (Torr)

Change in Sr concentration from bulk

Operating T LowT
(700-1000 C) (300 C)
Low PO, | 1 35% +50%
(mTorr)
Operating pO,
(atmospheric) +21% +25%
SECA Workshop July 28, 2010



Extracting Thermodynamic Parameters

AH (kJ/mol)

Equilibrium segregation:

S b
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s b

Lra mLa

Linearity at high T (above 500°C)
indicates equilibrium segregation.
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Previous room-temperature
measurements likely depended on
thermal history

Further details: T.T. Fister et al. APL
93, 151904 (2008).
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N
Mixed Conductor versus Electronic Conductor

= LSM: surface oxygen vacancies

= La,¢Sr,,C00; (LSC) & La, (Sr, ,Co, ,Fe, 305 (LSCF) : bulk oxygen vacancies

Electronic Conductor (LSM) Mixed Conductor (LSC, LSCF)
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\ |
Strontium Segregation in Mixed Conductors
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LSCF on NGO Reconstructs!

H=9/4: 50 mTorr

5000 = v v T v v r T v v v v
B Superlattice peaks present at quarter 9/4,-1/4  9/4,1/4
order positions (but not half) 1000
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B Intensities of superlattice peaks are = 0/a 3/2
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. 10-
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LSCF (001) on STO Surface Reconstruction

= Sample: 5 nm LSCF on Nb-doped
SrTiO5 (001)

= 1/3 order reconstruction peaks

= |L-dependence indicates a roughly
two monolayer thick
reconstruction

= See % order reconstruction peaks
on opposite strain state (NGO)
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Overview of Electrochemical Measurements

= Measure the response of a LSCF/GDC/
YSZ stack (20 nm of LSCF) with
platinum electrodes as a function of
pO, and electrochemical potential.

= Measure the location of the LSCF (004)
peak to determine the lattice
parameter of the film.

= Monitor the YSZ and GDC diffraction Platinum Wires
peaks to correct for systematic effects.

= Systematically change the oxygen
partial pressure and the applied
cathodic potential while monitoring
current through the sample.

Platinum Mesh
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Correlate Lattice Parameter with Conductivity: 500°C
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L decreases with pO, and with cathodic overpotential (-0.3 V)

Effect of overpotential is amplified at lower pO,

Kinetics of lattice expansion vary with pO,

Faster kinetics at 0.15 Torr correlates with a “kink” in conductance

data.
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Correlate Lattice Parameter with Conductivity: 700°C

La, (Sr,.4,C0, ,Fe, 305 (004) Peak
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* The “kink” is now at higher pO,.

* Note the kink in the c-lattice parameter mirrors the
kink in the conductivity.
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normalized intensity (a.u.)

Effect of LSM capping layer on LSCF/YSZ(111)
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= No critical angle shift for LSM capping layer after annealing
= |nterfaces more stable with the LSM overlayer
=  TXRF shows no Mn intermixing after 36 hours at 800C
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Overall conclusions

= Surface Reduction

— LSM (electronic conductor): Strontium surface segregation driven by surface oxygen
vacancies

— LSC, LSCF (mixed conductors): SrO formation at intermediate temperatures (700°C)
— LSCF: surface reconstruction varies with temperature and strain

= Oxygen Exchange

— LSCF: large changes in cobalt edge position (valence state)

— Total reflection inelastic x-ray scattering: new window on O K-edge,
low energy cation states

= Electrochemical potential introduces features in c lattice expansion
— Is a phase transition occurring?
— lIs it correlated with valence changes in the Fe or Co?

" Future Research
— Develop better surface defect models and their relationship with catalytic activity
— Correlate these effects with fuel cell performance
— Study model intercalant systems (e.g. LSM deposited on LSCF)
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