Characterization of glasses for SOFC sealing applications

Amit Shyam, Rosa Trejo, Dana McClurg, Joseph Muth and Edgar Lara-Curzio Oak Ridge National Laboratory, Oak Ridge, TN 37831-6069

OBJECTIVE: To characterize the phase stability and chemical compatibility of candidate glass seal materials

SOFC glass seals

- Requirements for SOFC Seals
- Simultaneous fulfillment of thermal, physical, chemical, mechanical and electrical property requirements.
- Phase stability and chemical compatibility without substantial property degradation for 40,000 hours in oxidizing and wet reducing environments.

*Mahapatra and Lu, J Power Sources, 2010

Microstructural Evolution

Pores coarsen; volume fraction of KAISi₃O₈ precipitates increases

Substrate: 8YSZ; environment: steam+H₂+N₂

YSZ Substrate - air
 YSZ Substrate - air

SECA

- Fewer but larger pores at longer times of exposure
- Heterogeneous microstructure
- At present rate ~15% of glass would crystallize after 40,000 hours

Effect of time of exposure on dimensional stability

Substrate: 8YSZ; environment: steam+H2+N2

· SCN glass flows more easily in the steam-rich environment as a result of differences in surface tension compared to air

SCN – An Alkali Barium Silicate glass

- Manufactured by SEM-COM, Toledo, OH
- · Glass received in powder form. Powder cold pressed into pellets and then sintered at 850°C for 2 hours. Specimens exposed at 800°C for 5,000 hours on 8YSZ and Alumina substrates* (longer term exposures in progress)

ngredient	Concentration				
SiO ₂	<75%				
K ₂ O	<12%				
BaO	<10%				
Na ₂ O	<8%				
Al ₂ O ₃	<5%				
TiO ₂	<1%				
CeO ₂	<1%				
As ₂ O ₃	<1%				
Sb ₂ O ₃	<1%				
MgO	<2%				
CaO	<5%				
F ₂	<1%				

Exposure in air and steam+H₂+N₂ environments

Phase stability of SCN - Alumina substrate

After 865-Hour Exposure in Air

Exposure Condition	Glass	KAISi ₃ O ₈	BaO	Ca-rich silicate	SiOz	Bead Attached
SCN Glass – As sintered	~	x	x	x	x	x
100 hours - Air		~	x	x	x	x
100 hours - Steam+H ₂ +N ₂		-	√(s)	x	x	x
500 hours - Air		~	x	x	x	x
500 hours - Steam+H ₂ +N ₂			✔(s)	x	x	x
865 hours - Air		-	√(s)	x	x	∽(r)
850 hours - Steam+H ₂ +N ₂	~	~	√(s)	⊮(s)	x	x
5000 hours - Air	~	~	~(s)		x	√(r)
5000 hours - Steam+H ₂ +N ₂	~	~	√(s)	✓(s)	x	∽(r)

(s) – Phase forms only on the surface of the bead
(r) – Bead remains attached due to formation of reaction layer

KAISi,O

In situ Wetting Behavior Measurements

- · Wetting behavior as a function of temperature, time and substrates
- SCN glass wets both substrates at temperatures > 750°C.

Summary

- The effect of time of exposure in air and steam+H₂+N₂ at 800°C on the properties and the microstructural, chemical and dimensional stability of SCN glass was investigated
- The kinetics of devitrification and pore size evolution were characterized and preliminary estimates for the concentration of pores and crystalline phases have been obtained for 40,000 hrs.
- Long-term exposure of SCN glass (20,000 hours+) is in progress.

Acknowledgements

This research was sponsored by the US Department of Energy, Office of Fossil Energy, SECA Core Technology Program at ORNL under Contract DEAC05-00OR22725 with UT-Battelle, LLC. We thank our program managers at NETL, Rin Burke and Travis Shultz for guidance and support.

