Synchrotron Studies of Cathode Materials

Y. Idzerda and A. Lussier

Montana State Univ., Bozeman, MT

Material Issues

- 1. Electrode (YSZ/LSTMO) alloying
- 2. Modifying TM valence with ion flow
- 3. A-site/B-site occupancy
- 4. Quantifying O vacancy concentration

Soft x-rays are ideal for buried interfaces!

Area Normalized XAS Intensity

X-ray Absorption Spectroscopy (XAS)

Co L edge XAS

MOTIVATION - Oxygen ion flow

Oxygen ion flow modifies Cr valence!

Bias driven symmetric cell (2 half cells)

Ion flow modified Cr valence

REF: Liu et al., Interfacial and Processing Science Annual Report (1999).

Oxygen ion flow (and bias)

reverse bias

Oxygen ion flow reverses Cr valence!

Fe and Co electronic structure (in-flow, no change for out-flow)

Increased oxygen co-ordination

Octahedral vs. tetrahedral O-Fe coordination

Oxygen ion flow

Oxygen ion flow modifies Fe valence!

A-site vs. B-site occupancy Y-doped SrTiO₃ (stable to 12%)

 $(Sr^{2+}, Ti^{4+} \text{ and } Y^{3+} - \text{ substitution site for } Y?)$

Image from webelements.com

Charge neutrality?

A-site vs. B-site occupancy Y-doped SrTiO₃

Y³⁺ in A-site for Y₂O₃

Y is Y³⁺ in A-site (Sr substitution)

A-site vs. B-site occupancy

Y in A-site as Y³⁺

Sr²⁺ spectra unchanged

Ti⁴⁺ spectra evolves suggesting changing oxygen coordination

Oxygen vacancy formation

Y-doped STO (with bias)

Y in A-site as Y³⁺

Sr²⁺ spectra unchanged

Ti⁴⁺ spectra evolves suggesting changing oxygen coordination

Oxygen vacancy concentration unaffected by bias

Mo-doped STO (with bias)

Mo valence and site?

Sr²⁺ spectra unchanged

Ti⁴⁺ spectra evolves suggesting changing oxygen coordination

Oxygen vacancy concentration affected by bias

V-doped STO (with bias)

V valence and site?

Sr²⁺ spectra unchanged

Ti⁴⁺ spectra evolves suggesting changing oxygen coordination

Oxygen vacancy concentration affected by bias

Onset of Degradation (425 mV @ 800 °C)

LSFC/GDC in air Symmetric cells

Onset varies (V_{drive})

Similar slopes

Equilibrium value?

Electromigration

From: D. Ralph, Cornell Univ.

Soft x-rays scattering

- · At grazing incidence -> 15 Å penetration depth
- specular scans -> structure along z, "bulk" properties
- rocking scans (diffuse scattering) -> lateral structure structural (chemical) roughness in-plane roughness perpendicular roughness

Specular vs. Diffuse Int. \longrightarrow Perp. Roughness (σ)

Width of Diffuse \longrightarrow In-plane Corr. Length (ξ)

Oxygen ion flow - cation diffusion

Oxygen ion flow removes
La from interface!

Ion flow modified interface width

Start $\sigma = 13 \text{ Å}$

$$\sigma = 12 \text{ Å}$$

$$\sigma = 18 \text{ Å}$$

$$\sigma = 15 \text{ Å}$$

$$\sigma = 20 \text{ Å}$$

$$\sigma = 22 \text{ Å}$$

Summary

Oxygen ion flow and/or surface potential modifies

- oxygen vacancy concentration.
- interfacial width.

Doping SrTiO₃ with V, Mo, and Y changes oxygen vacancy concentration.

Doping SrTiO₃ with V, Mo, and Y affects material response to oxidation and reduction.

Acknowledgements

Post-doctoral Fellow

Alex Lussier (FT) Ezana Negusse (1/3)

Graduate Students

Martin Finsterbusch (FT)

Beamline U4-B

National Synchrotron Light Source (BNL)
Dr. Dario Arena (BNL scientist)

