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Durability of ODS alloys 

-! Depends on the service conditions: temperature, 

stress, cycles… 

-! High temperature creep and oxidation are expected 

to be the main mode of degradation 

-! Existence of a stress threshold at a given 

temperature below which deformation is minimum  

-! For a mechanically sound component, oxidation will 

determine the components durability 
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Durability depends on the time to 
break away oxidation 

Low mass change = growth and spallation of Al2O3 

Breakaway oxidation = fast formation of Fe rich oxides
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Breakaway oxidation is due to Al 
consumption to form Al2O3 

-! Existence of a critical Al content Cb below which 

Al2O3 cannot form anymore 

-! Basis of FeCrAl lifetime models : time requires to 

drop from Co, initial Al concentration, to Cb 

! 

 V " #C
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Quaddakers et al. ! 
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Determination of oxidation kinetics 
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TEMPERATURE LIMITS

It is expected that ODS alloys in service will be subjected to mechanical loading such that their rate of

creep would be negligibly slow.  As a result, the service life of these alloys is likely to be determined by

their oxidation behavior.  Further, these alloys form very thin alumina scales which grow very slowly and

remain protective until the Al content in the alloy has been essentially exhausted, at which point a non-

protective mode of oxidation will ensue (‘breakaway oxidation’).  This means that the extent of oxidation

attack during protective behavior cannot readily be assessed by the usual methods of measuring section

thinning.  As a result, there is need for a method for predicting the oxidation-limited lifetimes of such

alloys.  Fortunately, for this class of FeCrAl alloys, the basis for such modeling is relatively

straightforward since there are several simplifying factors or assumptions involved:

• these alloys form essentially single-phase scales of alumina that are uniform in thickness;

• there is negligible internal attack; and

• the Al concentration gradient in the alloy remains flat until very near the end of life.

As a result, it is possible simply to equate the oxidation lifetime to the rate of consumption of the

available Al to form the oxide scale(12), so that:

Oxidation-limited lifetime = (Al available for oxidation) / (oxidation rate)

The oxidation kinetics of these alloys, in terms of total mass change (total oxygen consumed), have a

characteristic shape as indicated in Fig. 9.  For the purposes of modeling, the oxidation behavior has been
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Figure 9. Typical form of the oxidation kinetics of ferritic ODS alloys

described as involving three stages, defined as:

Stage 1, which involves initial, transient, oxidation is very short for these alloys at the temperatures of

interest, and so is ignored for the purposes of modeling.

Stage 2, which involves growth of the oxide according to a parabolic rate law; and

Stage 3, which involves a period of linear mass gain as result of continuing oxide growth, as well as

spallation of some of the scale.

As shown in Fig. 9, Stage 3 ends with a rapid increase in the total mass gain due to the formation of a

non-protective scale, as breakaway oxidation ensues.

- Wright and al.: 3 stages 

 oxidation kinetics 

* Intrinsic chemical failure 

* Mech. induced chemical failure 

* Partial spallation of Al2O3 

mass loss 



6  Managed by UT-Battelle 
 for the U.S. Department of Energy 

Good correlation between 
experimental data and models 

Complex models require  lots of 

experimental data 

Extrapolation to very  

long duration? 
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Figure 12. Comparison of predicted and observed oxidation lifetimes for alloy MA956

to 1300°C.  On this basis, and using values of CBb measured at only two temperatures, the model was

exercised to provide comparative lifetimes as a function of temperature and section thickness for all of the

ODS alloys of interest.  Predictions for 1100°C are shown in Fig. 13, which indicates that all of the alloys

(except MA956) are expected to exhibit reasonably similar lifetimes for the thicker sections (V/A > 0.4),

while there is some differentiation among the alloys for thinner sections.  Note also that in Fig. 12 there is

an increasing divergence between the predicted and the observed lifetimes as the value of V/A decreases

from 0.5 to 0.2.  Presumably, there is some feature of thinner sections that is not treated correctly by the

model.
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Figure 13. Comparison of predicted oxidation lifetimes for all the ODS alloys of interest at 1100°C

(note that the vertical line denotes the V/A value for a tube of 2.5 mm thickness)

The difference in oxidation rate, hence oxidation-limited lifetime, between alloys MA956 and 956H is

considered surprising since the only major difference in the nominal compositions of these alloys is in Al

content, which would be expected to change the total oxidation-limited lifetime (difference in Al

reservoir), but would not have been expected to influence the oxidation rate.  Examination of the detailed

compositions of these two alloys indicated a higher level of “free” Ti in MA956 (0.3 compared to 0.2

atomic %), where free Ti is that in excess of the amount required to form compounds with the C and N

present in the alloy.  Incorporation of Ti into the alumina scales formed on ODS-FeCrAl alloys has been

Need  total mass gain and not 

specimen mass gain 

New approach based on mass gain curves, time to breakaway 

oxidation and microstructure/elemental characterization 

Wright et al. 
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Extrapolation based on the linear 
relation between lifetime and thickness 

Linear lifetime/thickness relationship for many Al2O3 forming alloys 

Convenient way to compare alloys or exposure conditions  
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Focus on Al consumption in the alloy 
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What about Al gradients from the specimen center to the surface? 

How does Cb change with T, cycles… 

What is Cb? Uniform 

consumption of Al? 
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Alloy 

End 1 

Fe-rich oxide 

 Microprobe profile to determine Al remaining after 

the onset of breakaway oxidation 
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Mass gain curves 1h cycles 1200ºC 
MA956 & PM2000 

Manifest difference regarding oxidation kinetics and lifetime 

between MA956 and PM2000 
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Al remaining content measurement 

- Significant difference in Al 

content at the ends and in the 

center of the specimen 
- Cb = concentration at the 

center? 
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Cb depends on the specimen thickness 

Linear relationship between lifetime and thickness 

Cb constant up to 1mm and then linear increase 
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Significant effect of H2O on mass 
gain curves 

- Decrease of time to rupture for MA956 

- Change in oxidation kinetics for PM2000 

Air + 10%Vol H2O 

1200ºC
1mm

MA956 O
2

1.75 mm

1mm

PM2000 H
2
O 1.7-1.8 mm

on going

PM2000 O
2

1.8mm

MA956 H
2
O 

1.73mm1mm

S
p
e

c
im

e
n
 m

a
s
s
 g

a
in

 (
m

g
/c

m
2
)

-5

0

5

10

15

Number of 1h cycles

0 500 1000 1500 2000 2500 3000 3500 4000



13  Managed by UT-Battelle 
 for the U.S. Department of Energy 

Significant effect of H2O on remaining 
Al content in MA956 

- Effect of H2O on the total Al  concentration 

- Effect of H2O on the Al gradient 
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Significant effect of H2O on lifetime 
and remaining Al content  

Linear relationship between lifetime and thickness in 

H2O but significant decrease in lifetime 

Higher Cb value + higher Al gradient 
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No effect of 50%H2O-50%CO2 on 
oxidation kinetics 

On going tests but no difference with O2 thus far 
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No effect of 50%H2O-50%CO2 on 
MA956 specimen lifetime 

Lifetime in H2O/CO2 similar to O2 lifetime  

MA956 - H
2
O

MA956 - dry O
2

MA956 CO
2

Failed

On-going

1
2

0
0
°C

 L
if
e
ti
m

e
 (

h
)

500

1000

1500

2000

Specimen Thickness (mm)

0.5 1.0 1.5 2.0



17  Managed by UT-Battelle 
 for the U.S. Department of Energy 

Effect of cycle frequency on MA956  
oxidation kinetics: 1h versus 100h 

- Oxidation kinetics similar only at the beginning but 

deviate due most likely to different spallation rate 
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Longer lifetime with 100h cycle 
compared to 1h cycle 

Linear relationship for both cycle frequencies 

MA956 air 100 hr cycle

MA956 - dry O
2
 1h cycle

1
2

0
0
°C

 L
if
e
ti
m

e
 (

h
)

500

1000

1500

2000

2500

3000

Specimen Thickness (mm)

0.6 0.8 1.0 1.2 1.4 1.6 1.8



19  Managed by UT-Battelle 
 for the U.S. Department of Energy 

Al profile before breakaway oxidation 
to predict lifetime  

Al profile after 10 and 50000kh to assess the 

evolution of C with exposure time 

Pint et al. 2010 
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Conclusion 

-! Oxidation lifetime models based on oxidation kinetics 

are in good agreement with experimental data 

 - Al concentration profiles could improve existing 

models and be the basis of models relying on Al 

consumption 

- Integration of environment effects, cycling 

frequency… in models 

- Use models to improve ODS oxidation performance 

- Interaction between oxidation/ mechanical properties 

or/and microstructure evolution//mechanical properties 

need to be assessed. 
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