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National Institute for Fuel Cell Technology

• Established in Fall 2006 under the Implementation of US DOE 
EPSCoR and WV state EPSCoR Implementation

• Personnel
– 10 faculty from 4 departments (MAE, Chem. Eng., Chem., Phys.)
– 5 postdocs

8 d t t d t– 8 graduate students

• Vision - establish an internationally recognized, sustainable fuel cell 
research center for coal-based clean power generationresearch center for coal-based clean power generation

• Capabilities
– Button cell manufacturing– Button cell manufacturing
– Half-cell and full cell test benches
– Unique in-situ optical test bench
– High-end computational facilities
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Objectives of Current Research

• Characterize the effects of major trace contaminants in 
coal syngas on fuel cell performancey g p

• Identify the fundamental mechanisms through which 
these impurities affect performancethese impurities affect performance

• Develop novel materials to minimize impact of p p
contaminants

• Propose remedies for adverse effects of contaminants• Propose remedies for adverse effects of contaminants 
on fuel cell performance
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Phosphine Protocol
• MSRI cells, 0.8 mm anode support, with 25 micron active anode 

layer, 20 micron YSZ electrolyte, LSM/YSZ cathode (2 cm2).
• Anode current collector: anode center not covered with mesh or 

paste.
• Sequential exposure to wet hydrogen, syngas, and syngas with PH3

at 800oCat 800oC.
• Syngas: 30% H2, 26% H2O, 23% CO, 21% CO2.
• PH3 conc. typically 10 ppm, injected after humidifier.

• In this section, focus on overvoltages (ΔEOCV – ΔEappl + IRs).
• Ex.  Apply 0.80 V, ΔEOCV = 1.08 V, Rs = 0.10 Ω, I = 1.0 A

O l 1 08 0 80 (1 0 A)(0 10 Ω) 0 18 V• Overvoltage = 1.08 – 0.80 + (1.0 A)(0.10 Ω) = 0.18 V
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Long term Performance test at 0.25 A/cm2
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Ohmic and polarization resistances from EIS
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Anode appearance after PH3 exposure

No metallic layer underneath mica seal
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The nickel migrates!

Virgin SOFC                                           After PH3 exposure
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Van der Pauw measurements on the anode.

• Does Ni migration cause 
power loss through damage to 
the Ni percolation network in 
the anode?

• Perform in-situ van der Pauw 
measurements during 
exposure experiment.

• Linear plots, zero intercept 
imply pure ohmic behavior.

• All 4 connection combinations 
yield very similar resistances.

• Calculate sheet resistance and 
resistivity.
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VDP results summary

H2 W/ 3% 
water

H2 W/ 26% 
water

Syngas 
after 24 h

Syngas after 
96 h

Syngas after 
170 h

Syngas+PH3
after 24 h

Syngas+PH3
after 96 h

Syngas+PH3 
after 170 h

Resistivity 575 585 588 608 610 606 605 608Resistivity 
(µΩ.cm)

575 585 588 608 610 606 605 608

Estimated uncertainty +/- 5% -> no significant change.

Loss of power not due to loss of percolation network in the 
supporting part of the anodesupporting part of the anode.

Lit. value for pure nickel at 800oC = 45 µΩ.cm
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Recent overvoltage study

• Protocol
• After 200 hour burn-in using wet hydrogen, then clean syngas, g y g , y g ,

expose the anode to 10 ppm PH3 at fixed overvoltages for 24 hours.
• Applied overvoltage sequence: 0.1, 0.2, 0.3, 0.1, 0.2, 0.3 V (not 

corrected for iR drop) for 1-2 days each.p) y
• Then expose the anode to clean syngas, and finally wet hydrogen 

for 1 day each.
• Collect measurements of OCV polarization curves EIS at OCV andCollect measurements of OCV, polarization curves, EIS at OCV and 

at fixed overvoltages each day.

• Objective: see if there is a correlation between the overvoltage and• Objective: see if there is a correlation between the overvoltage and 
the rate of power loss.
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Power vs time during 10 ppm PH3 exposure
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Rate of Power Loss vs Gas Mixture
first application of 0.2 V overvoltage results in highest rate of power loss

4

second application – lower
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Series and polarization resistances vs time
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Summary of phosphine results

• Substantial loss of power (0.05 to 0.5 mW/cm2/hr) during exposure 
to 10 ppm PH3.

• Migration of nickel, possibly as nickel phosphide phases.
• No significant change in anode resistivity over 200 hrs.
• Power loss is not recovered using clean syngasPower loss is not recovered using clean syngas.
• Higher rate of power loss on first exposure to higher overvoltage, but 

no subsequent correlation of power loss with overvoltage.
• Recent result no degradation for 10 ppm PH in dry H Is water• Recent result – no degradation for 10 ppm PH3 in dry H2.  Is water 

needed for the degradation process?
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Sulfur-Tolerant SOFC Anode

MSRI cell impregnated with 
La Ce O coating tested in syngasLaxCe1-xO2 coating tested in syngas 
with 20 ppm H2S and load of 
0.25 A/cm2.  Onset of decay 
delayed 2 to 13 hours.

Baseline MSRI cell with Pt paste tested 
in syngas with 20 ppm H2S and load of 
0.25 A/cm2.
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Effect of HCl impurity

Cell voltage vs time at 0.5 A/cm2 for a cell running on syngas before/after 
addition of 100 ppm HCl for 300 hours at 800ºC, 100 hours at 850ºC. Cell 
overvoltage ca. 0.2 V.  No significant changes in ohmic or polarization 

2020

g g g p
resistances during HCl exposure.



After 400 hours exposure to 100 ppm HCl

cross sectioncross-section
of anode

top surface
of anode

2121

clean reduced anode after HCl exposure



In-situ measurements

Probostat with sapphire window gives optical
t l t daccess to one electrode.

Use Sagnac interferometry to measure strain.

Use IR thermometer to measure directly the
SOFC surface temperature.
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Surface temperature results for the Ni mesh on 
the anode

<- time response to step changes
in current densityin current density.

Effect of current density and gasEffect of current density and gas
composition ->
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Accomplishments: Multiscale Continuum Modeling

• Developed 3-D anode-supported SOFC model which includes 
conservation of mass, charge and energy, multi-component mass 
transfer, surface and gas phase reactions, simultaneous oxidation of 
hydrogen and CO.

• Refined parameters by fitting VI curves to experimental data.
• Equilibrium calculations for stable forms in the presence of selected 

contaminants.
• Phenomenological model for degradation.g g
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Continuum Modeling

• Developed a detailed 3D model for syngas SOFCs that gives comprehensive 
information on various constitutive processesinformation on various constitutive processes.

1081

1082

Experimental

1

0.5

at
ur

e
(K

)

1077

1078

1079

1080 Numerical

nt
ia

l(
V

)

si
ty

(W
/c

m
2 )

0.6

0.8

0.3

0.4

Te
m

pe
ra

1074

1075

1076

1077

P
ot

en

P
ow

er
de

n

0.2

0.4

0.1

0.2

H2 42.45%, CO 32.55%, CO2 11.17%, H2O 13.85%

i (A/cm2)
0 0.2 0.4 0.6 0.8

1072

1073

Surface temperature of a button cell operating 
l t 1073 K C i b t

i (A/cm2)
0 0.25 0.5 0.75 1 1.25 1.5

0 0

H2 30%, CO 23%, CO2 21%, H2O 26%
H2 14.15%, CO 10.85%, CO2 33.51%, H2O 41.49%
H2 26.3%, CO 2.9%, CO2 4.4%, H2O 49.3%, CH4 17.1%

25

on coal syngas at 1073 K: Comparison between 
experiments and simulations

Predicted performance of button cells 
operating on various fuel compositions



Degradation Modeling
• phenomenological model to simulate the 

typical poisoning effect of the impurities.

Temperature Effect 

Concentration Effect 
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Conclusions

• PH3 poses a significant threat to long term operation of Ni anodes in 
SOFCs.  Once losses appear, they are irreversible.

• Possible mechanisms include nickel migration and blocking of nickel 
surfaces in the active layer.

• An oxidation catalyst (La-doped ceria) delays onset of degradation y ( p ) y g
by H2S.  Can that strategy be applied to PH3?

• Over 100 hours, 100 ppm HCl does not significantly affect 
performance or resistances in the anode, despite visible structural p , p
changes.

• More in-situ methods are needed.  Optical temperature and strain 
measurements are promising.p g

• Computational methods will help understand local chemical 
conditions and provide predictions of failure.
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