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Introduction

• Governing equations for transport phenomena are highly 
non-linear PDEs and therefore CPU intensive

• Need fast approximate solution for design purposes that 
allows a wide range of cases to be simulated quickly

• Reduced-order models based on proper orthogonal 
decomposition (POD) are optimal choice

• Goal is to develop accurate and efficient POD methods and 
implement them for MFIX
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Proper Orthogonal 
Decomposition
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Proper Orthogonal 
Decomposition (POD) Method

• POD is also known as Singular Value Decomposition, 
Karhunen-Loeve Decomposition, Principal Components 
Analysis, and Singular Systems Analysis

• Provides optimal basis for modal decomposition of a data 
set

• Extracts key spatial features from physical systems with 
spatial and temporal characteristics

• Reduces a large set of governing PDEs to a much smaller 
set of ODEs
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POD Method

•  Extracts:
‣ time-independent orthonormal basis functions Φk(x)

‣ time-dependent orthonormal amplitude coefficients αk(ti) such 
that the reconstruction

is optimal in the sense that the average least square truncation 
error 

                                                                                 (1)

is a minimum for any given number m≤M of basis functions over all possible sets of 
orthogonal functions

u(x, ti) =
M∑

k=1

αk(ti)ϕk(x), i = 1, . . . ,M

εm =

〈∥∥∥∥∥u(x, ti)−
m∑

k=1

αk(ti) ϕk(x)

∥∥∥∥∥

2〉
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POD Method

• Optimal property (1) reduces to:

                                                                                            (2)  

                                                                                      

{Φk} are eigenfunctions of integral equation (2), whose kernel is the 
averaged autocorrelation function

                                                                                       (3)

• For a finite-dimensional case, (3) replaced by tensor product matrix

∫

D
〈u(x)u∗(y)〉ϕ(y)dy = λϕ(x)

〈u(x)u∗(y)〉 ≡ R(x,y)

R(x,y) =
∑M

i=1 u(x, ti)uT (y, ti)
M
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Acceleration Methods 

• Database splitting 

• Algorithm for quasi-symmetric A matrix 

• Freezing A matrix

• Initial time step adjustment used in combination with 
database splitting

• Variable snapshot distribution

• Coupled vs. split autocorrelation matrices
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Model Problem

ylength

xlength

h s0

v1
v2v2

Table 1: Parameters of fluidized bed.
Parameter Description Units
xlength Length of the domain in x-direction cm 25.4
ylength Length of the domain in y-direction cm 76.5

Number of cells in x-direction - 108
Number of cells in y-direction - 124

v1, v2 Gas inflow velocities cm/s 12.6, 1
pgs Static pressure at outlet g/cm/s2 1.01e6

Tg0 Gas temperature K 297
µg0 Gas viscosity g/cm/s 1.8e−4

tstart Start time s 0.2
tstop Stop time s 1.0
ρs Particle density g/cm3 1.0
Dp Particle diameter cm 0.05
hs0 Initial height of packed bed cm 38.25
ε∗g Initial void fraction of packed bed - 0.4

Gidaspow, Multiphase Flow and Fluidization, Continuum and Kinetic Theory Descriptions, 1994, pg.56
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POD Modes

Field variable Symbol No. of modes
Gas pressure Npg 2
Solids volume fraction Nεs 7
u gas velocity Nug 2
v gas velocity Nvg 5
u solids velocity Nus 8
v solids velocity Nvs 6

ℵ(x, ti) =
Nℵ∑

k=0

αℵk (ti)ϕℵk (x), i = 1, . . . ,M
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Acceleration Methods
Results

Speed-up Factor Error, εavg

FOM 1 0
ROM with no acceleration 23 1.882E-2
ROM with database splitting 25 4.370E-2
ROM with projection freezing 24 0.151818
ROM with initial time step adjustment 52 9.879E-3
ROM with database splitting and

initial time step adjustment 137 6.240E-2

11

Cizmas, Richardson, Brenner, O’Brien, and Breault, “Acceleration techniques for reduced-order models based on proper orthogonal decomposition,” 2008
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Error vs. Acceleration Method
Vg

(a) FOM, (b) ROM, no acceleration, (c) ROM, matrix freezing, (d) ROM, database splitting, (e) ROM, initial time step adjustment, (f) ROM, 
database splitting and initial time step adjustment; and the gas velocity difference between (g) FOM and ROM, no acceleration, (h) FOM 
and ROM, matrix freezing, (i) FOM and ROM, database splitting, (j) FOM and ROM, initial time step adjustment, and (k) FOM and ROM, 
database splitting and initial time step adjustment (all values at t = 1.0 s).

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

1

12
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Snapshot Sampling
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Snapshot Distributions

• Constant sampling rate

‣ Time between snapshots varied from 0.1 s to 0.001 s (8 to 
800 snapshots)

• Constant sampling rate on subintervals (aka Step method)

‣ Time domain divided into two subintervals

• Variable sampling rate

‣ Time between snapshots based on a logarithmic curve fit

Wednesday, April 22, 2009
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Computational vs. Physical Time
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Continuously Varying 
Sampling Rate

tcpu(t) = 588.14 ln(t) + 1071.0
Curve fit for computational time:

Sampling time interval 

subject to

so M and α/β uniquely determine

times for snapshot collection:

dt(ti) = α ln(ti) + β
α

β
= constant

M∑

i=1

dt(ti) = tM − t1

dt(ti) = 0.00419 ln(ti) + 0.00763

ti+1 = ti + dt(ti)

Wednesday, April 22, 2009
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Step Method‡

• Decompose flow into two regions: transient and quasi-
steady

• Transient region is from 0.2 s to 0.35 s  

• Quasi-steady region is from 0.35 s to 1.0 s

• Collect 100 snapshots in each region, using a constant 
sampling rate

• Gives better snapshot resolution in the regions of greater 
flow complexity without the difficulties of devising a 
continuously varying distribution

‡ Park and Lee, “An Efficient Method of Solving the Navier-Stokes Equations for Flow Control,” 1998
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Sampling Methods
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Results

Time between No. of Error, ε

snapshots, dt, [s] snapshots ug vg us vs εg pg

0.1 8 0.166 48.628 4.324E-003 0.584 5.737E-006 3.424E+006

0.075 12 0.167 30.761 5.840E-003 0.518 5.305E-006 1.977E+006

0.05 16 0.166 58.420 6.459E-003 0.558 3.204E-006 3.978E+006

0.025 32 0.163 21.339 6.328E-003 0.478 6.342E-006 1.240E+006

0.01 80 0.161 14.513 1.539E-003 0.195 4.507E-007 6.779E+005

0.0075 108 0.160 1.165 5.346E-004 1.149E-002 1.438E-008 3.883E+004

0.005 160 0.161 1.709 1.052E-003 1.401E-002 1.578E-008 9.977E+004

0.0025 320 0.160 0.812 3.675E-004 2.059E-003 2.014E-009 9.807E+003

0.001 800 0.160 0.247 1.315E-004 1.937E-004 1.781E-009 1.287E+003

0.004 200 0.161 0.981 1.533E-003 9.015E-003 4.617E-009 4.406E+004

0.0015 and 0.0065 202 0.165 0.261 1.968E-004 2.488E-004 1.911E-008 1.456E+003

varied from 9.2E-4 to 0.0075 197 0.165 0.241 1.439E-004 3.525E-004 3.372E-008 1.254E+003

ε =

〈∥∥∥∥∥u(x, ti)−
m∑

k=1

αk(ti) ϕk(x)

∥∥∥∥∥

2〉
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Coupled vs. Split 
Autocorrelation 

Matrix
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Coupled Approach

Rc =





R11 R12 . . . R1N

R21 R22 . . . R2N
...

...
. . .

...
RN1 RN2 . . . RNN





Rij =





〈p̃gi ∗ p̃gj〉 〈ε̃gi ∗ p̃gj〉 〈ũgi ∗ p̃gj〉 〈ṽgi ∗ p̃gj〉 〈ũsi ∗ p̃gj〉 〈ṽsi ∗ p̃gj〉
〈p̃gi ∗ ε̃gj〉 〈ε̃gi ∗ ε̃gj〉 〈ũgi ∗ ε̃gj〉 〈ṽgi ∗ ε̃gj〉 〈ũsi ∗ ε̃gj〉 〈ṽsi ∗ ε̃gj〉
〈p̃gi ∗ ũgj〉 〈ε̃gi ∗ ũgj〉 〈ũgi ∗ ũgj〉 〈ṽgi ∗ ũgj〉 〈ũsi ∗ ũgj〉 〈ṽsi ∗ ũgj〉
〈p̃gi ∗ ṽgj〉 〈ε̃gi ∗ ṽgj〉 〈ũgi ∗ ṽgj〉 〈ṽgi ∗ ṽgj〉 〈ũsi ∗ ṽgj〉 〈ṽsi ∗ ṽgj〉
〈p̃gi ∗ ũsj〉 〈ε̃gi ∗ ũsj〉 〈ũgi ∗ ũsj〉 〈ṽgi ∗ ũsj〉 〈ũsi ∗ ũsj〉 〈ṽsi ∗ ũsj〉
〈p̃gi ∗ ṽsj〉 〈ε̃gi ∗ ṽsj〉 〈ũgi ∗ ṽsj〉 〈ṽgi ∗ ṽsj〉 〈ũsi ∗ ṽsj〉 〈ṽsi ∗ ṽsj〉





ũ(x, ti) =





ũg(x, ti)
ṽg(x, ti)
ũs(x, ti)
ṽs(x, ti)
ε̃g(x, ti)
p̃g(x, ti)





Scaled concatenated variable, 

ℵ̃ =
ℵ

ℵmax

Rij ∈ R6 × R6

 u

Rc ∈ R6N × R6N

N - spatial dimension
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Split Approach

Rs =





R〈pg∗pg〉 0 0 0 0 0
0 R〈εg∗εg〉 0 0 0 0
0 0 R〈ug∗ug〉 0 0 0
0 0 0 R〈vg∗vg〉 0 0
0 0 0 0 R〈us∗us〉 0
0 0 0 0 0 R〈vs∗vs〉





R〈ℵ∗ℵ〉 =
∑M

i=1 ℵ(x, ti)ℵT (y, ti)
M

Rs ∈ R6N × R6N

M - number of snapshots
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Comparison of Results for 
Split and Coupled Approaches

Variable Error
εcoupled εsplit εcoupled

rel εsplit
rel

pg 1.245E+006 57.91 1.230 5.72E-007
εg 1.012E-005 5.891E-010 1.012E-005 5.891E-010
ug 1.305E-002 5.081E-003 9.758E-004 3.799E-004
vg 1.380 8.980E-003 8.944E-002 5.820E-004
us 4.251E-005 4.833E-006 3.271E-004 3.719E-005
vs 2.248E-004 4.866E-005 1.613E-003 3.491E-004

ε =

〈∥∥∥∥∥u(x, ti)−
m∑

k=1

αk(ti) ϕk(x)

∥∥∥∥∥

2〉

εrel =
ε

ℵmax
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POD for 
Moving Discontinuities
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Moving Discontinuities & POD

• Examples of moving discontinuities

‣ Bubbles in multiphase flow

‣ Shocks in transient high-speed gas flow

• Techniques

‣ Domain decomposition 

- Nozzle flow†

- Panel flutter‡

25

† Lucia, King, Beran, and Oxley, “Reduced Order Modeling for a One-Dimensional Nozzle Flow with Moving Shocks,” AIAA-2001-2602
‡ Beran, Lucia, Pettit, “Reduced-order modelling of limit-cycle oscillation for aeroelastic systems,” J. Fluids and Structures 19 (2004)
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Bubbling Case: Geometry

26

xlength

ylength

hs0

V2,T1 V2, T1

V1, T1

T0

Gidaspow, “Multiphase Flow and Fluidization,” pg. 158

Parameter Description Value
xlength Length of the domain in x-direction 40.0cm
ylength Length of the domain in y-direction 76.5cm
imax Number of cells in x-direction 108
jmax Number of cells in y-direction 124

v1 Jet gas inflow velocity 577.0cm/s
v2 Distributed gas inflow velocity 53.6cm/s
ps Static gas pressure at outlet 1.01× 106g/(cm·s2)
Tg0 Gas temperature 297K
µg0 Gas viscosity 1.8× 10−4g/(cm· s)

tstart Start time 0s
tstop Stop time 5s
"t Initial time step 1.0× 10−4s
ρso Constant solids density 2.42g/cm3

Dp Solids particle diameter 0.8mm
hs0 Initial packed bed height 29.2cm
ε∗g Packed bed void fraction 0.40
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Void Fraction: 
T = 1.0 - 2.0 sec.
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Void Fraction 
Reconstruction, t=1.5 sec.
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Moving Discontinuities & POD
Bubbling Case

• Observations

‣ some modes seem to be defining the bubble at 
a certain instant

‣ reconstruction could produce unphysical 
results unless an excessive number of modes is 
used

• Needs

‣ Augment POD by “bubble modes”

‣ Track bubble location

30
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Mathematical Morphology‡

• Theory and technique for analysis of spatial 
structures

• Based on set theory, integral geometry, and lattice 
algebra

• Developed to identify geometry of porous media

• Currently widely used in image analysis

31

‡ A. Haas, G. Matheron & J. Serra, “Morphologie mathematique et granulometries en place,” Annales des 
Mines, XI pp. 736-53, XII pp 767-82, 1967 
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Operations

• Morphological

‣ Erosion

‣ Dilation

• Non-morphological

‣ Blurring

‣ Blur/erosion

‣ Dilation/blur

‣ Thresholding

32
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Morphological Operations

33

� 

erosion( f (i, j)) =min( f (i + k, j + l) − b(k,l))

• All operations performed on structuring elements (SE)

‣ Used to probe image with desired shape

‣ Assumes values of image

‣ Elements oriented at 0, 45 ,90, and 135 degrees from horizontal

• All morphological operations based on two operators:

‣ Erosion: (minimum shift in data on SE’s)

‣ Dilation: (maximum shift in data on SE’s)

� 

dilation( f (i, j)) =max( f (i − k, j − l) + b(k, l))
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Non-Morphological 
Operations

34

• Blurring
• Noise reduction technique
• Operates on 3 point stencil
• Defined as:

• Pseudo-morphological operators:
• blur/erosion

• dilation/blur

• Applied after image is blurred and eroded/dilated
• Used to eliminate obvious non-edges 

� 

be( f ) = blur( f ) − erosion(blur( f ))

� 

db( f ) = dilation(blur( f )) − blur( f )
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Non-Morphological 
Operations

35

•Edge indicator:
• Minimum of maximums of be and db operators
• Will highlight all edges

� 

Indicator( f ) =min(max(dbi( f )),max(bei( f )))
• Thresholding

• Image segmentation technique
• Used to isolate areas of interest
• Applied globally (binary fix) or semi-globally (0 outliers only)
• Must be applied to gray-scale images
• Example:

� 

thres(Ind( f (i, j))) =1
thres(Ind( f (i, j))) = 0

if 

otherwise

� 

α ≥ Ind( f (i, j)) ≥ β

i = 1, ..., 4
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Bubble Detection

36

• t = 1s for Vjet = 355 cm/s
• Threshold applied for values α = .1 and β = .2
• Gives good edge representation (2 pt. ramp)

Bubbling Test Cases from Multiphase 
Flow and Fluidization, Gidaspow, p. 156.

Void Fraction from MFIX @ t = 1.0 s.
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Bubble Detection

37

Edge indicator before thresholding Edge indicator after thresholdingVoid Fraction from MFIX @ t = 1.0 s.
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Augmented POD

• Add “discontinuity modes” to set of POD basis 
functions

• Discontinuity modes could move and deform in 
time

• Hope:

‣ Removes Gibbs phenomenon by capturing the 
discontinuity exactly

38
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1D Test Case

• First-order wave equation used to simulate 
simple moving discontinuity

• Discretized as

39

∂u

∂t
+ c

∂u

∂x
= 0

un+1
i = un

i −
c∆t

∆x
(un

i − un
i−1)
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1D Test Case (cont.)

• Simple quadratic solution is assumed

• Discontinuity added at t=0 s according to

40

u(x, t) = a + b(x− ct) + d(x− ct)2

u(x, t = 0) =
{

a + bx + dx2 + 1 x ≤ xs,0

a + bx + dx2 x > xs,0
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Augmented POD for Wave Eq.

• Assume a POD approximation with a 
discontinuity mode

• Use notation

• Substitute in PDE

41

u(x, tk) = φ0(x) +
m−1∑

j=1

φj(x)αj(tk) + ψ(x, tk)β(tk)

ψ(x, tk) = φm(x, tk), β(tk) = αm(tk), α0(tk) ≡ 1

∂

∂t
(

m∑

j=0

φj(x, tk)αj(tk)) + c
∂

∂x
(

m∑

j=0

φj(x, tk)αj(tk)) = 0
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POD-ROM for Wave Eq. (cont.)

• A Galerkin projection onto the basis functions 
gives the system of equations

• where

• System solved with a Runge-Kutta routine 
42

Aα̇ + Bα + d = 0

[A]ij = (φj ,φi)

[B]ij =
{

(cφ′
j ,φi) j = 1, . . . ,m− 1

(cφ′
m,φi) + (φ̇m,φi) j = m

{d}i = (cφ′
0,φi)
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Wave Equation Results

43
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3D Implementation
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POD Discretized (PODD) vs. 
POD Analytical (PODA)

• Substitute POD 
approximation into 
governing PDEs

• Allows any spatial/
temporal discretizations 
and integration 
strategies for resulting 
ODEs

• More difficult to 
implement for void 
fraction and pressure

PODD
• Substitute POD 

approximation into 
discretized governing 
equations

• Follows same solution 
algorithm as full-order 
model

• Easier to implement for 
void fraction and 
pressure correction 
algorithms

PODA

45
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3D Implementation of 
POD for MFIX

• Current approach uses PODD method, but 
PODA method should also be explored

• ODEx 3D (3D POD code) is being tested as a 2D 
code with third dimension k=1

46
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Conclusions & 
Future Work

47
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Conclusions

• 3D POD version of MFIX is on schedule and 
budget

• Morphology can capture bubble location and 
shape

• In a simple case, POD approximation augmented 
by a discontinuity mode to capture the moving 
discontinuity

• Optimal distribution of snapshots in time 
depends on time scale of problem

48
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Future Work 

• Finish 3D POD of MFIX

• Extend augmented POD 

‣ Burgers’ equation 

‣ 2D flow

• Develop a method for predicting bubble location 
at next time instant

• Apply augmented POD to multiphase flow

49
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Thank you!
Questions?
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