

23rd Annual Conference on Fossil Energy Materials, Pittsburgh May 2009

UK-US Phase 1 Report

Gordon J Tatlock
University of Liverpool

ODS Alloy Development

UK Team

University of Liverpool

Gordon Tatlock, Andy Jones, Justin Ritherdon, Hameed Al-Badairy, Chun-Liang Chen, John Walker, Yaw-Wang Chai

Cranfield University

Nigel Simms, Jim Norton

Siemens (UK)

Gordon McColvin

Aims and Objectives

- •Establish and review the current state of knowledge regarding joining of ODS-FeCrAl alloys
- •Identify the most appropriate techniques for joining sheet and tubing and collaborate with partners to apply these techniques to generate quantitative data
- •Establish and extend the current state of knowledge regarding microstructural control of ODS-FeCrAl alloys, especially in torsionally orientated structures
- •Investigate the use of coatings on ODS alloys for enhanced oxidation and thermal protection

Friction Stir Welds in PM2000

10 mm

Friction Stir Welds in PM2000

10 mm

1mm

high angle g.b

Friction Stir Welds in PM2000

100µm

Warm rolled at 175°C, 40% reduction, then recrystallised at 1380°C for 1h.

Dispersion Size Measurements

1μm Parent Region 1μm

before recrystallization treatment

UK – US Collaboration on Fossil Energy Research and Development - Advanced Materials

Dispersion Size Measurements

1μm

Welded Region

before recrystallization treatment

Dispersoid Distribution after FSW of PM2000

30 25 20 Number 10 5 0-5 6-10 11-15 16-20 21-25 26-30 31-35 36-40 more 50 Particle size (nm)

1µm

Welded Region before recrystallization treatment

Dispersion Size Measurements

FSW region- 1380°C 1hr Extraction replicas of sample

Cubic -Y₂O₃

UK – US Collaboration on Fossil Energy Research and Development - Advanced Materials

Y₃Al₅O₁₂ Garnet (YAG)

Yttrium – aluminium oxide nanoparticle

Partial Recrystallisation of rods of PM2000

Primary and Secondary Recrystallisation in Rod

Deformation of Rods Cut From Sheet

Bent samples

 $120^{\circ} \rightarrow 90^{\circ} \rightarrow 45^{\circ}$

Twisted samples

 $360^{\circ} \rightarrow 270^{\circ} \rightarrow 180^{\circ} \rightarrow 90^{\circ}$

Heat treatment 1380°C, 1 hour

Deformation of Rods Cut From Sheet

Recrystallisation after deformation

Bending angle 120°

90°

45°

Coatings on PM2000

Coated and oxidised ODS alloys

PM2000 + sputtered FeCrAlY + EBPVD TBC 500h 1200°C

UK – US Collaboration on Fossil Energy Research and Development - Advanced Materials

Torsional Deformation

10 mm

Transverse section

Selective Laser Melting of PM2000 Powder

Task 8 Key Benefits

- Brought together a wide range of complementary expertise from both countries.
- Good combination of fundamental and applied research producing solutions in an important area.
- Strengthened existing links between ORNL and the University of Liverpool (UK Task Leader spent 3 month sabbatical at ORNL working on ODS alloys)
- Developed much greater understanding of the key problems when using ODS alloys, by pooling knowledge and expertise.
- Developed new solutions to the joining and tailoring of microstructure and coatings on ODS alloys.

23rd Annual Conference on Fossil Energy Materials, Pittsburgh May 2009

UK-US Phase 1 Report

Gordon J Tatlock
University of Liverpool

ODS Alloy Development

Task 8 Phase 2

- Characterisation of new ODM powder and consolidated sheet and tube.
- Secondary recrystallisation trials on sheet and torsionally deformed tubes.
- Friction stir welding of butt joints in new ODM sheet plus secondary recrystallisation and creep testing.
- High resolution electron microscopy to determine sequence of oxide dispersion transformations with time and temperature and link with secondary recrystallisation behaviour.

Task 8 Phase 2

- Production and testing of welded demonstrator component out of new ODM alloy.
- Organise a series of seminars/ workshops to raise industrial awareness of new ODS alloys and their capabilities.

Background

- •Need to drive down CO₂ emissions from fossil fuelled power plant by increasing efficiency.
- •Need to increase the maximum operating temperature by developing materials with better high temperature capabilities.
- •Oxide Dispersion Strengthened (ODS) alloys have superior high temperature creep resistance and oxidation resistance over current alloys.

Background

- Two main problems to overcome:
- •Joints fabricated by conventional fusion welding techniques have low creep strength at high temperatures;
- •Secondary recrystallisation needs to be optimized to produce grain structures where large grains can be custom orientated with respect to the principal hoop stress.

Deliverables

- Comprehensive description of all joining techniques applicable to ODS alloys
- Review of oxidation lifetime data (new)

completed

 Database of quantitative information on joints applied to ODS alloy sheet and tubing

Joint UK-US report completed

Deliverables

Torsionally orientated grain structures and coatings developed and tested **completed**

Report on the influence of metal spinning parameters on sheet ODS alloy microstructures

Replaced by study of dispersoid evolution

completed

Assessment of feasibility/performance of TBCs deposited on ODS alloys without bond coatings

completed

