

23rd Annual Fossil Energy Materials Conference

Robert R. Romanosky, Advanced Research Technology Manager

Pittsburgh, PA May 12, 2009

FE Materials Program Goals

- Development of new materials that have the potential to improve the efficiency, performance, and/or reduce the cost of existing technologies.
- Development of a technology base in the synthesis, processing, life-cycle analysis, and performance characterization of advanced materials.
- Development of materials for new systems and capabilities.

Advanced Research Materials Program

3

New Alloys

4

New Alloys Direction

 Development of Alumina-Forming Austenitic Stainless Steels

– Approach: Al2O3-forming austenitic stainless steels

- Room-Temperature Ductility Enhancement of Mo Alloys with Nano-Sized Metal Oxide Dispersions
 - Investigate the ability to enhance the roomtemperature ductility of molybdenum (Mo) based alloys by the inclusion of candidate nano-sized metal oxide dispersions

Functional Materials

Refractory Development Direction

- Develop refractory materials that have the performance to enable fuel flexibilitity
 - NETL has developed and scaled up with refractory producers non-Cr₂O₃ compositions determined to have high potential for gasifier use (contain mixtures of MgO, Al₂O₃, ZrO₂)
 - Discussions are underway for limited field trials at a commercial gasifier (targeting in 2-3 months)
 - Depending on field trials compositions will be refined or scaled up for additional testing (6-12 months)

Breakthrough Concepts

Breakthrough Concepts Direction

- Integrated Design of Refractory Metal Based Alloys
 for Fossil Energy Applications
 - Develop refractory metal based alloys utilizing an integrated design approach
- Computational Materials Design with Experimental Verification
 - Combine computational materials development with experimental verification to engineer new highperformance materials

Coatings

ritish Gas, 1999

- COST 501/British Gas
- Alloy ODM751

(10)

• Run at >1100°C for several thousand hours

NATIONAL ENERGY TECHNOLOGY LABORATORY

50µm

P92: steam, 4,000h

P92: wet air, 4,000h

Coatings Direction

- Investigate critical issues associated with aluminide coatings on Fe-base alloys & Ni-based superalloys
- NDE Methods for Thermal Barrier Coatings
 - Monitor TBC degradation and predict lifetime
 - Assess TBC reliability and product quality

UltraSuperCritical Materials

12

Current USC R&D Efforts

- Current technology for U.S. Boilers
 - Typical subcritical = 540 °C
 - Typical supercritical = 593 °C
 - Most advanced supercritical = ~610 °C
- Advanced ultrasupercritical (USC) DOE goal for boiler and turbine materials capable of:
 - 760 °C (1400 °F)
 - 5,000 psi (35 MPa)
 - Oxygen firing
- Ultrasupercritical plant advantages:
 - Higher efficiency 45 to 47% HHV
 - Decreased emissions ~ 20%
 - CO₂ capture ready with oxy-firing
- Meeting these targets requires:

13

- The use of new materials
- Novel uses of existing materials

USC Steam Boiler

- material evaluation and process development
- long-term material properties evaluation
- long-term degradation of materials due to fabrication processes
- microstructural evolution of alloys
- modeling of materials
- fundamental and applied materials research to address all materials issues related to using these alloys at 760 °C

Oxy-fired Materials

14

Materials Performance in CO2 and CO2-Steam Environments

- Evaluate oxidation/corrosion performance of metallic structural alloys in pure CO2 and in CO2-steam environments over a wide temperature range
- Establish the kinetics of scaling and internal penetration, if any, and develop correlations for long term performance
- Identify viable alloys for structural and gas turbine applications
- Evaluate the influence of exposure environment on the mechanical properties (especially creep, fatigue, and creepfatigue) of the candidate alloys

15

Turbines

16

Contact Information

Robert R. Romanosky 304-285-4721 r<u>obert.romanosky@netl.doe.gov</u>

NETL <u>www.netl.doe.gov</u>

(17)

Office of Fossil Energy www.fe.doe.gov

Patricia Rawls 412-386-5882 patricia.rawls@netl.doe.gov