23rd Annual Conference on Fossil Energy Materials Pittsburgh, PA *May 12-14, 2009*

IMPROVED TEMPERATURE SENSING IN SLAGGING GASIFIERS

James P. Bennett Rick Krabbe Jasper Kwong Hugh Thomas

NETL – USDOE 1450 Queen Ave SW Albany, OR, USA 97321

E-Mail: james.bennett@netl.doe.gov

Phone: (541) 967-5983

Outline

- Program goals
- Need for accurate temperature measurement
- Causes of sensor failure (thermocouples)
 - post mortem analysis of gasifier thermocouples
 - -laboratory simulations
- Current research direction
 - -Redesign of current sensors and how used
 - -New approaches to signal transfer
- Conclusions
- Acknowledgement

Program Goals

Develop reliable sensors that will accurately monitor gasification temperature. Research to achieve this goal is being conducted by:

- 1) evaluating the causes of thermocouple failure
- 2) developing improved thermocouple designs
- 3) evaluating new sensors and/or communication devices

Need for Accurate Temperature Measurement in a Gasifier

Gasification Temperature ≈ 1325° to 1575°C

- Temperature control is critical during heating, idling, or cooling
- High gasification temperature accelerates slag/refractory liner wear – shorter campaign
- Low gasification temperature causes poor slag flow - can lead to gasifier shutdown
- Impacts thermal cycling refractory spalling wear

Direct impact on gasifier operation/on-line availability

Thermocouple Failure

(typical life is less than 120 days)

Causes of Thermocouple Failure

Thermocouple

Gasifier Steel Shell

Insulating Refractory Brick

- Slag corrosion
- Mechanical shear
- Design/assembly/ installation flaws
- Refractory liner

Causes of Thermocouple Failure

* = Possible refractory related issue

Range of Chemistry Found in Over 300 U.S. Coal Slags Due to Mineral Impurities

Material	Weight Percent			
	Max.	Min.	Avg.	Std. dev.
SiO ₂	68.5	7.1	43.6	16.4
Al_2O_3	38.6	4.1	25.2	10.2
Fe ₂ O ₃	69.7	2.1	17.0	11.2
CaO	45.1	0.5	5.8	6.6
MgO	8.0	0.1	1.2	1.1
K ₂ O	3.5	0.2	1.4	0.7
Na ₂ O	6.5	0.3	0.9	0.6
TiO ₂	3.7	0.4	1.4	0.8

Source: W.A. Selvig and F.H. Gibson; Analysis of Ash from United States Coals; USBM Bulletin, Pub. 567; 1956, 33 pp.

Note: Petcoke slags contain V and Ni

Chemical Composition and Physical Properties of High Chrome Oxide Refractory Materials

	Brick Type	
	<u>A</u>	<u>B</u>
Chemistry (wt pct) - Cr ₂ O ₃	90.3	87.3
- Al ₂ O ₃	7.0	2.5
- ZrO ₂	0.01	5.2
Bulk Density (gms/cc)	4.21	4.07
Porosity (pct)	16.7	16.5
CCS (MPa)	48.3	66.9

Slag/Refractory Interactions – Chemical Spalling and Corrosion of the Cr₂O₃-Al₂O₃ Refractory

Slag diffusion, corrosion, chemical spalling

Fe

Αl

Cr

Failed Thermocouples

(shear, corrosion, slag and char penetration)

Edge Spalling/Corrosion of Refractory Where the Thermocouple Enters the Gasifier

Generalized Thermocouple Assembly

Metallic Thermocouple

(Pt/Rh - type R, S, or B)

Possible Slag/Pt Thermocouple Wire Interactions

SEM
Micrograph
Showing FeS
and Fe in
Slag Particle

Fe – Pt Phase Diagram

Pt - S Phase Diagram

Coal Slag Attack on Thermocouple Wire

Test Assembly – Type "S" Thermocouple, 1500°C (goal), Ar

EMF Output – 1500°C, Ar

Thermocouple Wire Sample Exposure Test Conditions

(Preliminary Data)

Exposure Conditions

- 1450°C, 8 Hours hold at temperature
- 100 % Pt wire
- Ultra high purity Ar with C and Ti metal getters
- Samples covered with high purity alumina crucible caps and set on high purity alumina setter powder
- Test Slag: Coal ash
- Test Samples:
 - 99 % Al₂O₃
 - 90 % Cr₂O₃ A
 - 90 % Cr₂O₃ B

Cup – Top View, After Exposure

With Slag

Without Slag

 Cr_2O_3 - A

 $Cr_2O_3 - B$

Cup – Side View, After Exposure

With Slag

 Cr_2O_3 - A

 Al_2O_3

Without Slag

 $Cr_2O_3 - B$

Current Research Direction

- Modifications in traditional thermocouple assembly
- New approaches to temperature sensing
 - Evaluating redesign of thermocouple sensors and how utilized in gasifiers
 - Exploring different approaches to thermocouple assemblies
 - Evaluating different ways to transfer signal information from the gasifier

Conclusions

- Current temperature sensors in gasifiers fail by a number of means (shear, material corrosion, sidewall spalling, contact with slag,). Post-mortem analysis difficult/impossible.
- Preliminary thermocouple data indicates contact with slag/refractory/or gasifier environment can lead to thermocouple failure or false temperature readings
- Currently evaluating thermocouple redesign and how thermocouples are used in a gasifier
- Evaluating ways to transfer signal information from the gasifier

ACKNOWLEDGEMENT

Support for this research is provided by: USDOE – NETL; Advanced Research - Materials

