Aluminide Coatings for Power Generation Applications Y. Zhang and J. P. Stacy Tennessee Technological University B. A. Pint and J. A. Haynes Oak Ridge National Laboratory 22nd Annual Conference on Fossil Energy Materials Pittsburgh, PA July 8-10, 2008 ## **Two Main Research Components** - Investigate critical issues associated with aluminide coatings on Fe-base alloys & Ni-based superalloys to develop a comprehensive coating lifetime evaluation approach and to improve long-term coating durability - Task I: Assess long-term performance of aluminide coatings on Fe-base alloys to explore potential benefits of iron aluminide coatings in terms of lifetime and applicable environments - Task II: Develop a type of Pt-enriched γ+γ' twophase bond coat on Ni-based superalloys and evaluate its performance for land-base turbine applications ## Issues Related to Current β-(Ni,Pt)Al Bond Coat Phase transformations & rumpling affect the ability of bond coat to accommodate TGO, leading to TBC spallation Tolpygo et al., Acta Mater., 2004 50 µm ## Why Pt-Enriched $\gamma+\gamma'$ Two-Phase Bond Coat? The constant demand for increased operating temperatures in gas turbine engines has been the driving force for development of more reliable thermal barrier coating (TBC) systems Pt-enriched γ+γ' two-phase coatings may offer several advantages over the β-(Ni,Pt)Al bond coat - better compatibility - improved metallurgical stability - higher creep strength - reduced manufacturing cost 1100°C Ni-Pt-Al ζ-PtAl, α -NiPt(Al) v'-Ni-A 90 y-Ni 100 Ni 90 ### Potential Concerns about Pt-Enriched $\gamma+\gamma'$ Coatings Oxidation performance is sensitive to substrate composition. They may not be suitable for certain superalloys. (Tawancy et al., *J. Mater. Sci.*, 2003; Haynes et al., *Surf. Coat. Technol.*, 2007; Pint et al., submitted to *Superalloys 2008*) - Pt back-diffusion upon thermal exposure for thin-walled components or land-based turbine applications - Significant Pt diffusion occurred from γ+γ' coating into substrate after 300, 1h cycles at 1100°C - Pt diffused into the substrate from ~30 to ~100 μm (Zhang et al., Surf. Coat. Technol., 2005) ### **Research Focus** - Interdiffusion between Pt-diffused γ+γ' coatings & superalloy substrates - SX Y-free René N5 and DS René 142 (~14 at.% Al) - Interdiffusion experiments: 900-1050°C - Preliminary diffusion modeling - Pt concentration profiles & Pt penetration depth - Cyclic Oxidation Performance - Different types of $\gamma+\gamma'$ coatings: 1h cycles at 1100°C | Alloys | Al | Cr | Co | Ta | W | Re | Мо | Hf | S | |-------------|-------|-------|--------|-------|-------|-------|-------|--------|--------| | N5 (at.%) | 13.5 | 8.1 | 7.5 | 2.1 | 1.7 | 1.0 | 0.9 | 0.07 | 1.0 | | (wt.%) | (6.1) | (7.0) | (7.5) | (6.3) | (5.2) | (3.1) | (1.4) | (0.2) | (0.5) | | R142 (at.%) | 13.4 | 7.7 | 11.9 | 2.1 | 1.6 | 0.9 | 0.9 | 0.45 | 38ppma | | (wt.%) | (6.0) | (6.6) | (11.7) | (6.3) | (4.7) | (2.8) | (1.5) | (1.32) | (20) | ## **Experimental Approach** - Synthesis of Pt-diffused $\gamma+\gamma'$ coatings - Electroplating ~ 7μm Pt - Annealing in vacuum for 2h at 1175°C Nagaraj et al., *US Patent, 5,427,866*, 1995 Rickerby et al., *US Patent, 5,667,663*, 1997 Zhang et al., *Surf. Coat. Technol.*, 2005 - Interdiffusion experiments - Encapsulated in an Arfilled quartz capsule - Concentration profiles: electron probe microanalysis | Temperature
(°C) | Time (h) | Substrate | |---------------------|----------|-----------| | 900 | 1000 | N5 | | 1000 | 1000 | N5 & R142 | | 1000 | 2000 | N5 | | 1050 | 1000 | N5 & R142 | ## As-Fabricated Pt-Diffused γ+γ' Coating - Near coating surface: Pt = 23%, Al = 20% (Al in substrate = 14%) - Pt penetration depth = 35~40 μm, defined as Pt < 0.5%</p> ### Interdiffusion was insignificant after 1000h at 900°C AI-900°C - Slight coarsening of γ' in the coating - Al remained ~20% after diffusion; Pt decreased from 23 to 18% - Pt penetration depth: 40 to 44 μm # Interdiffusion became more profound at temperatures ≥ 1000°C Formation of an interdiffusion zone between the coating & substrate consisting of Pt-enriched γ' precipitates in γ ## Distribution of alloying elements in interdiffusion zone can be correlated to their partitioning in γ and γ' - Partitioning to γ': Ta (Al, Pt) - Partitioning to γ: Cr, Co, W, Re, & Mo - Disruption of the original fine γ/γ' microstructure may have an effect on thin-walled components ## While the change in Al content was minimal, Pt loss to the substrate was evident after diffusion - Al uphill diffusion was still effective after 1000h at 1050°C (Hayashi et al., Metall. Mater. Trans., 2005) - Pt at coating surface: $23\% \rightarrow 18\% \rightarrow 15\% \rightarrow 10\%$ - Pt penetration depth: $40 \rightarrow 44 \rightarrow 79 \rightarrow 98 \mu m$ ## Interdiffusion in $\gamma+\gamma'$ -coated superalloys is a multicomponent mulitphase diffusion problem - Presence of γ and γ' - Uphill Al diffusion - Limited diffusivity data - Diffusivities are likely concentration-dependent - The γ+γ'-coated superalloy does not exhibit fixed terminal compositions as in the diffusion couple of γ+γ' (Ni-20Al-22Pt) / γ+γ' (Ni-14Al) - The present case could be approximated as a thin film at the end of a semi-infinite bar ### **As-Annealed Condition: Thin Film Solution** #### After 2h post-plating anneal at 1175°C Thin Film on a Semi-infinite Bar $$C(x,t) = \frac{bc_0}{\sqrt{\pi Dt}} e^{-\frac{x^2}{4Dt}}$$ b— the film thickness (=7 μ m) c_o — original solute conc. (=100%) D: solute diffusivity; x: the diffusion distance; t: diffusion time $$\ln C(x,t) = -\frac{1}{4Dt}x^2 + \ln\frac{bc_0}{\sqrt{\pi Dt}}$$ (1) For $$x > 0$$, $c \to 0$ as $t \to \infty$; $x = 0$, $c \to \infty$ as $t \to 0$ (2) $$\int_0^{+\infty} C(x,t) dx = bc_0$$ - For constant D, $InC \sim x^2$ should be a straight line; slope = -1/4Dt - Plot of $InC_{(Pt)} \sim x^2$ showed two linear portions ## Pt diffusivity data for γ and γ' phases are available only for dilute Pt concentrations In $$\gamma$$ -Ni, Pt = ~3.2% $D_{Pt}(\gamma) (m^2 s^{-1}) = 9.2 \times 10^{-5} \exp(-291.2 \ kJ \ mol^{-1}/RT)$ Karunaratne and Reed, *Acta. Mater.*, 2003 In $$\gamma'$$ -Ni₃Al, Pt = ~2.1% $D_{Pt}(\gamma')$ $(m^2s^{-1}) = 7.8 \times 10^{-4} \exp(-323 \ kJ \ mol^{-1}/RT)$ Minamino et al., *Defect Diff. Forum*, 1997 | At 1175°C | Pt Diffusivity (m²/s) | |--|-------------------------| | For diluted Pt in γ | 2.8 x 10 ⁻¹⁵ | | For diluted Pt in γ' | 1.4 x 10 ⁻¹⁵ | | Thin Film Solution (Linear Portion I) | 3.1 x 10 ⁻¹⁴ | | Thin Film Solution (Linear Portion II) | 7.9 x 10 ⁻¹⁵ | The Pt diffusivity appears to be a function of Pt concentration ### Calculated Pt Profiles after Thermal Exposure - Post-plating anneal: 2h at T₁ (1175°C) → t₁ at T₂ Diffusion test: t₂ at T₂ - 1000h at 1050°C using $D_{Pt}(\gamma')$ Pt Concentration (at.%) **Measured by EPMA Calculated Profile** 20 60 120 Distance from surface (µm) - The calculated Pt profile fits better for more extensive interdiffusion where the Pt level (≈ 5%) is close to diluted concentrations - Interactions between Pt & other elements were not taken into account ## **Estimated Pt Diffusion Depth after Diffusion** Pt Diffusion Depth = $$x_0 + \Delta x = x_0 + 2\sqrt{Dt}$$ | Cond | ition | From Pt | Calculated I | Substrate | | | |--------|----------|--------------|----------------------|---------------------|------------------------------|--| | T (°C) | t (h) | Profile (μm) | D _{Pt} (γ′) | D _{Pt} (γ) | Alloy | | | 900 | 1000 | 44 | 45 | 50 | N5 | | | 4000 | 1000 | 79 | 65 | 78 | R142 | | | 1000 | 2000 | 90 | 73 | 93 | | | | 1050 | 1000 | 98 | 82 | 103 | N5 | | | 1150 | 1000, 1h | 205 | 160 | 200 | | | | 900 | 40,000 | _ | 81 | 113 | V = 40 | | | 1050 | 15,000 | _ | 209 | 288 | X ₀ = 40μm | | - For limited interdiffusion, estimation using D_{Pt} (γ') is closer to the experimental value - For extensive interdiffusion, estimation using $D_{Pt}(\gamma)$ gives a better fit - The thin film equation was not used because $c \to 0$ at $x \to \infty$ # Comparison of Microstructural Stability between $\gamma+\gamma'$ & β -(Ni,Pt)Al Coatings Adapted from Haynes et al., submitted to Surf. Coat. Technol., 2008 **YSZ** ## Preliminary Evaluation of Oxidation Performance of Different Types of $\gamma+\gamma'$ Coatings - Pt-diffused γ+γ' coatings (Simple γ+γ') - Electroplating ~ 7μm Pt, vacuum annealing for 2h at 1175°C (18-20 at.% Al) - Modified γ+γ' coatings - Increased Al content (22-25 at.%) via a secondary aluminizing step (Deodeshmukh, Mu, & Gleeson, Surf. Coat. Technol., 2006) - Pack cementation for 0-30 min at 1050°C (Stacy et al., Surf. Coat. Technol., 2007) - With and without Hf doping ## Simple and Modified $\gamma+\gamma'$ coatings **Modified** γ+γ' **coatings** (Stacy et al., *Surf. Coat. Technol.*, 2007) - Coating Thickness: 30-40 μm - The Al content was increased from 20 to 26 at% in the modified γ+γ' coating ## Cyclic Oxidation Performance of Simple and Modified $\gamma+\gamma'$ Coatings at 1100°C - Simple & modified γ+γ' coatings registered similar mass gains, but higher than the β-(Ni,Pt)Al coating - The Hf level introduced during pack cemention was not optimal ## Visual Comparison of Surface Roughness After 1000, 1h cycles at 1100°C, on LS-N5 Simple γ+γ' Modified γ+γ' Modified $\gamma+\gamma'$ + Hf - Upon visual inspection the modified $\gamma+\gamma'$ coatings appeared to be more planar - The modified + Hf was the flattest among all the samples ## Simple and modified $\gamma+\gamma'$ coatings exhibited different scale morphologies After 1000, 1h cycles at 1100°C, on LS-N5 Some extent of ridge-like structure on the modified γ+γ' coatings, consistent with oxidation of Ni-22Al-20Pt at 1150°C (Hayashi, et al., Mater. Sci. Forum, 2006) ### **Cross-Sectional Observation of Oxidized Coatings** After 1000, 1h cycles at 1100°C, on LS-N5 - The Al_2O_3 scales formed on modified $\gamma+\gamma'$ coatings were thinner - Cross-sectional observations were consistent with surface roughness ## **Summary** - Interdiffusion between Pt-Diffused γ+γ' Coatings & Superalloy Substrates at 900-1050°C - Interdiffusion & microstructural evolution were minimal at 900°C, but became more significant at ≥ 1000°C - The predicted Pt profile using thin film solution showed reasonable agreement for the γ + γ' coatings after extended diffusion - The estimated Pt penetration depth agreed well with the experimental results - Cyclic Oxidation Performance of Different γ+γ' Coatings - The modified γ+γ' coatings containing higher Al exhibited slightly lower mass gains and thinner Al₂O₃ scales - The Hf level in the $\gamma+\gamma'$ coatings needs to be optimized ## **Acknowledgments** - W. E. Hawkins, TTU - L. R. Walker and G. W. Garner, ORNL - DOE Fossil Energy Advanced Research and Technology Development Materials Program, under contract DE-AC05-00OR22725 with UT-Battelle, LLC and subcontract 4000032193 with TTU - National Science Foundation-GOALI Program under Grant No. 0504566, B. A. Nagaraj and B. T. Hazel (GE Aviation)