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Two Main Research Components

* Investigate critical issues associated with aluminide
coatings on Fe-base alloys & Ni-based superalloys to
develop a comprehensive coating lifetime evaluation
approach and to improve long-term coating durability

— Task |: Assess long-term performance of
aluminide coatings on Fe-base alloys to explore
potential benefits of iron aluminide coatings in
terms of lifetime and applicable environments

— Task ll: Develop a type of Pt-enriched y+y’ two-
phase bond coat on Ni-based superalloys and
evaluate its performance for land-base turbine
applications




Issues Related to Current 3-(Ni,Pt)Al Bond Coat

ectroplating ~ 7um Pt + Zhang et al., Surf. Coat. Technol., 2003
lectroplating ~ 7, Pt+
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T6Ipygo et al., Acta Mater., 2004

* Phase transformations & rumpling affect the ability of bond
coat to accommodate TGO, leading to TBC spallation




Why Pt-Enriched y+y’ Two-Phase Bond Coat?

* The constant demand for increased operating
temperatures in gas turbine engines has been the driving
force for development of more reliable thermal barrier

coating (TBC) systems .

* Pt-enriched y+y' two-phase 1100°C
coatings may offer several

advantages over the p-(Ni,Pt)Al
bond coat

— better compatibility

— Iimproved metallurgical
stability

— higher creep strength

— reduced manufacturing cost KRNI R L

at % of Mi




Potential Concerns about Pt-Enriched y+y' Coatings

* Oxidation performance is sensitive to substrate composition.
They may not be suitable for certain superalloys.

(Tawancy et al., J. Mater. Sci., 2003; Haynes et al., Surf. Coat. Technol., 2007; Pint

et al., submitted to Superalloys 2008)

* Pt back-diffusion upon thermal exposure for thin-walled
components or land-based turbine applications

— Significant Pt diffusion
occurred from y+y' coating into
substrate after 300, 1h cycles at
1100°C

— Pt diffused into the substrate
from

(Zhang et al., Surf. Coat. Technol., 2005)

)
N
-
©
'
c
o
=
©
F o
-
c
[+))
(3)
c
o}
o

Oxidation of
300, 1h at 1100°C

Pt (After)

/

20 40 60 80 100
Distance from surface ( pum)



— SX Y-free René N5 and DS René 142 (~14 at.% Al)

Research Focus

— Interdiffusion experiments: 900-1050°C

— Preliminary diffusion modeling
> Pt concentration profiles & Pt penetration depth

* Cyclic Oxidation Performance

— Different types of y+y’ coatings: 1h cycles at 1100°C

Alloys Al Cr Co Ta W Re Mo Hf S
N5 (at.%) 8.1 7.5 2.1 1.7 1.0 0.9 0.07 1.0
(Wt.%) (6.1) (7.0) (7.5) (6.3) (52) (3.1) (1.4) (0.2 (0.5)
R142 (at.%) 7.7 119 2.1 1.6 0.9 0.9 0.45 38ppma
(Wt.%) (6.0) (6.6) (11.7) (6.3) (4.7) (2.8) (1.5) (1.32) (20)




Experimental Approach

* Synthesis of Pt-diffused y+y’ coatings
— Electroplating ~ 7um Pt
— Annealing in vacuum for 2h at 1175°C

Nagaraj et al., US Patent, 5,427,866, 1995

Rickerby et al., US Patent, 5,667,663, 1997
Zhang et al., Surf. Coat. Technol., 2005

* Interdiffusion experiments Temperature

] o Time (h) Substrate
— Encapsulated in an Ar- (°C)
filled quartz capsule 900 1000 N5
— Concentration profiles: 1000 1000 N5 & R142
eI?Ctron prOl.ae 1000 y40L0]0) N5
microanalysis
1050 1000 NS & R142




As-Fabricated Pt-Diffused y+y' Coating
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* Near coating surface: Pt = 23%, Al = 20% (Al in substrate = 14%)
* Pt penetration depth = 35~40 um, defined as Pt < 0.5%



Interdiffusion was insignificant after 1000h at 900°C

Pt as-coated

Al-900°C
/

Concentration (at.%)
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Distance from surface (um)

* Slight coarsening of y' in the coating
* Al remained ~20% after diffusion; Pt decreased from 23 to 18%
* Pt penetration depth: 40 to 44 um



Interdiffusion became more profound at
temperatures 2 1000°C

:Inter.dif_fu.sio'n_Z'on,é,” frutirai s

* Increased coarsening of y’

* Formation of an interdiffusion zone between the coating & substrate
consisting of Pt-enriched y’ precipitates in y




Distribution of alloying elements in interdiffusion
zone can be correlated to their partitioning in y and vy’
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* Partitioning to y': Ta (Al, Pt) Concentration (at.%)
* Partitioning to y: Cr, Co, W, Re, & Mo

* Disruption of the original fine y/y' microstructure may have an effect
on thin-walled components



While the change in Al content was minimal, Pt
loss to the substrate was evident after diffusion
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Al uphill diffusion was still effective after 1000h at 1050°C (Hayashi et al.,
Metall. Mater. Trans., 2005)

Pt at coating surface: 23% — 18% —> 15% — 10%

Pt penetration depth: 40 > 44 — 79 — 98 um




Interdiffusion in y+y'-coated superalloys is a
multicomponent mulitphase diffusion problem

Pt profiles before * Presence of y and y’
& after diffusion _ ] ]
* Uphill Al diffusion

X As-plated (~7um Pt) * Limited diffusivity data
©
S 60 Aft ¢ olati * Diffusivities are likely
'g . annee;hp;: af 131'7%?(: concentration-dependent
3 / * The y+y'-coated superalloy
S 20 1050°C/1000h does not exhibit fixed
© WA terminal compositions as
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* The present case could be approximated as a thin film at
the end of a semi-infinite bar



As-Annealed Condition: Thin Film Solution

After 2h post-plating anneal at 1175°C Thin Film on a Semi-infinite Bar

Dpt efps = 3.1 x 1014 m?/s

b — the film thickness (=7um)
c,— original solute conc. (=100%)

D: solute diffusivity; x: the diffusion
distance; t: diffusion time

In Pt (Pt in at.%)

500 1000 1500 2000
2 2
X (um’)

(1) Forx>0,c—>0ast—> ©;x=0,c>~ast—>0 (2) j+wC(X,t)dX=bC0
0

* For constant D, InC ~ x? should be a straight line; slope = -1/4Dt
* Plot of InC,, ~ x> showed two linear portions



Pt diffusivity data for y and y’ phases are
available only for dilute Pt concentrations

NEENEREWLIAM D () (Mm°s™) = 9.2x10™° exp(—291.2 kJ mol */RT)
Karunaratne and Reed, Acta. Mater., 2003

NEANWANEPE R D (/') (m°s™) = 7.8x10* exp(—323 kJ mol */RT)

Minamino et al., Defect Diff. Forum, 1997

At 1175°C Pt Diffusivity (m?/s)
For diluted Pt in y 2.8 x 10-15
For diluted Pt in y’ 1.4 x 10-15
Thin Film Solution (Linear Portion I) 3.1 x 1014
Thin Film Solution (Linear Portion Il) 7.9 x 10-1°

* The Pt diffusivity appears to be a function of Pt concentration



Calculated Pt Profiles after Thermal Exposure
* Post-plating anneal: 2h at T, (1175°C)— t, at T, }
* Diffusion test: t, at T,

1000h at 1050°C
using Dg, (v')

1000, 1h cycles at 1150°C
using Dg, (') & Dp, (V)
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The calculated Pt profile fits better for more extensive interdiffusion
where the Pt level (= 5%) is close to diluted concentrations

Interactions between Pt & other elements were not taken into account



Estimated Pt Diffusion Depth after Diffusion

Pt Diffusion Depth = x, + AX = X, + 24/ Dt

Condition From Pt Calculated Depth (um) Substrate
T (°C) t (h) profile)(m) Dp (v') Dy () Alloy
900 1000 44 45 50 N5
1000 79 65 78 R142
1000
2000 90 ) 93
1050 1000 98 82 103 N5
1150 1000, 1h 205 160 200
— 81
— - Xo = 40pm

For limited interdiffusion, estimation using Dg, (Y') is closer to the
experimental value

For extensive interdiffusion, estimation using Dg, (y) gives a better fit
The thin film equation was not used becausec > 0 at x > «




Comparison of Microstructural Stability
between y+y' & B-(Ni,Pt)Al Coatings

y+y' Coatlngs B-(Ni,Pt)Al Coating

—a

g e RO “"‘-b,‘_

Adapted from Haynes et al., submitted 700, 1-h cycles
to Surf. Coat. Technol., 2008 - at ¥150°C -




Preliminary Evaluation of Oxidation Performance
of Different Types of y+y' Coatings

* Pt-diffused y+y' coatings

— Electroplating ~ 7um Pt, vacuum annealing for 2h
at 1175°C (18-20 at.% Al)

* Modified y+y' coatings

— Increased Al content (22-25 at.%) via a secondary

aluminizing step (beodeshmukh, Mu, & Gleeson, Surf. Coat.
Technol., 2006)

— Pack cementation for 0-30 min at 1050°C
(Stacy et al., Surf. Coat. Technol., 2007)

— With and without Hf doping



Simple and Modified y+y' coatings

Substrate

30 4
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®* Coating Thickness: 30-40 um

* The Al content was increased from 20 to 26 at% in the modified
v+y' coating



Cyclic Oxidation Performance of
Simple and Modified y+y' Coatings at 1100°C
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on LS-N5

400 600 800 1000
Number of 1h Cycles at 1100°C

Simple & modified y+y' coatings registered similar mass gains,
but higher than the 3-(Ni,Pt)Al coating

The Hf level introduced during pack cemention was not optimal



Visual Comparison of Surface Roughness

After 1000, 1h cycles at 1100°C, on LS-N5

Simple y+y’ Modified y+y’ Modified y+y" + Hf

* Upon visual inspection the modified y+y' coatings appeared to
be more planar

* The modified + Hf was the flattest among all the samples



Simple and modified y+y’' coatings
exhibited different scale morphologies

After 1000, 1h cycles at 1100°C, on LS-N5

* Some extent of ridge-like structure on the modified y+y’' coatings,

consistent with oxidation of Ni-22AIl-20Pt at 1150°C (Hayashi, et al.,
Mater. Sci. Forum, 2006)



Cross-Sectional Observation of Oxidized Coatings

After 1000, 1h cycles at 1100°C, on LS-N5

Simple y+y’ Modified y+y’ Modified y+y" + Hf
(4.4um) (2.4um) (2.6pm)

* The Al,O; scales formed on modified y+y' coatings were thinner

* Cross-sectional observations were consistent with surface roughness



Summary

* Interdiffusion between Pt-Diffused y+y' Coatings &
Superalloy Substrates at 900-1050°C

— Interdiffusion & microstructural evolution were minimal
at 900°C, but became more significant at 2 1000°C

— The predicted Pt profile using thin film solution showed
reasonable agreement for the y+y' coatings after
extended diffusion

— The estimated Pt penetration depth agreed well with the
experimental results

* Cyclic Oxidation Performance of Different y+y' Coatings

— The modified y+y' coatings containing higher Al exhibited
slightly lower mass gains and thinner Al,O; scales

— The Hf level in the y+y’' coatings needs to be optimized
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