Novel and Improved Electrode Structures Through Infiltration

Steve Visco Mike Tucker, Craig Jacobson, Tal Sholklapper, Grace Lau, Lutgard De Jonghe

Lawrence Berkeley National Laboratory Berkeley, California USA

Presented at 8th Annual SECA Workshop and Peer Review Core Technology Program – Electrodes: Performance and Degradation August 7th – 9th 2007

LBNL SECA Core Program

In FY07 the LBNL core effort was focused on the following areas:

- 1) Infiltration of perovskites and other appropriate catalysts into composite cathodes to form a interconnected network of nanoparticulate coating;
- Infiltration of ceria and other appropriate materials into Ni-YSZ anodes to improve sulfur tolerance;
- Determination of baseline performance and long term stability of infiltrated and non-infiltrated electrodes;
- Design and fabrication of 2-cell stack for national labs and industrial teams as a standard platform for testing electrodes, interconnects, contact paste, and seals in a manner that allows reliable comparison across research teams;
- 5) Continued optimization of interconnect coating technology and elucidation of the mechanism of chromium migration through protective coatings.

Metal Stability & Interactions

Oxidation behavior
Oxide spallation
Area specific resistance
Chromium migration

Stainless steel interconnect

- •Vapor chromium transport
- •Bulk & grain boundary Cr transport
- •Surface migration

High Temperature Oxidation of Metal Components

ERNEST ORLANDO LAWRENCE Berkeley National Laboratory

rerere

BERKELEY LAB

Long-term Stability of Coatings for Preventing Cr Loss

Condition for minimum spallation of (~1%) scales on 430ss after isothermal oxidation and fast cooling to RT

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture. The lower the operating temperature the thicker the scale can be

 Cr_2O_3 not only grows slower but also can be thicker before failure

RE slow scale growth and increase adhesion/thickness

Reducing atmosphere treatment also increase adhesion

Sweet spot between 650–750 C

Scale thickness decrease because of higher thermal stresses and/or more defect formation at high oxidation temperatures

Conditions to reach ~1% Spallation in static air after isothermal oxidation and fast coolng to RT

Time to Minimum Spallation

What have we done to solve the Cr problem?

Cr Evaporation

- Coat steel to prevent Cr diffusion to electrodes
- Density of coating seems more important than coating material

Cr Deposition

- Pairwise MOx-Cr interactions suggest Cr tolerant catalysts
- Enhance Cr tolerance of commercially available electrodes by infiltration

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

LNF Does Not React With Cr₂O₃

Pellets of LNF-Cr₂O₃ and LSM-Cr₂O₃ powder mixtures reacted for 150h at 700°C and 900-950°C

BERKELEY NATIONAL LABORATORY

LBNL Infiltration Core Program

- Improve existing structures (and novel electrode design)
 - Improve cathode performance at low temperature
 - Improve tolerance to Cr
 - Sulfur tolerant anodes
- Novel Electrode Design
 - Infiltration technology allows flexibility in SOFC design and processing
 - Enables mSOFCs

Infiltration Structures & Challenges

<u>Electrolyte supported</u>: porous electrodes - straighforward

<u>Anode supported</u>: cathode is straightforward, anode may be too dense in unreduced state

<u>Metal supported</u>: engineered for infiltration entire electrode structure is infiltrated

Surfactant dispersed Electrode Precursors

Porous electrolyte matrix

electronic conductor **(**) ionic conductor

Composite Commercial electrodes (YSZ-LSM)

Sulfur Tolerant Ni-YSZ

1111111

BERKELEY LAB

LBNL Collaboration with Electro Sciences Lab to Improve Performance of ESL SOFC product

Working on standard cell for <u>700 C</u> operation - available to industrial teams, Universities, and National Labs - US supplier

Commercial Symmetric Electrolyte Supported LSCF Cell from INDEC LSCF-YDC/TZ3Y/YDC-LSCF

HC Starck LSCF/LSCF Cell

=>45% improvement in cell resistance

Electrolyte supported cell: electrode Impedance before and after infiltration 700 °C

ERNEST ORLANDO LAWRENCE Berkeley National Laborati

BERKELEY LAB

1111111

Core Technology Program Technology Transfer

- Infiltration workshop
- Transfer technology to companies to U.S. companies and labs
- Guidance to manufacturers of cell stack components (ESL) to enhance U.S. competitiveness

Infiltration Workshop: February 16th, 2007

- Argonne National Laboratory
- Pacific Northwest National Lab
- Georgia Tech
- Instructional DVD from Workshop available

QuickTime[™] and a V/DVCPRO - NTSC decompressor are needed to see this picture.

LBNL 2-cell Standard Stack Core Effort

Based on 2.5 cm x 2.5 cm SOFC plates for 2" bore furnace Original design by Hideto Kurokawa

Scaled-up Standard Stack: LBNL lead with Lane Wilson & Wayne Surdoval

5 cm x 5 cm SOFC plate design to fit into 3" bore furnace (\$1500)

Quotation 4418

McAllister Technical Services Date: 02-Feb-07 West 280 Prairie Avenue This estimate is good for 60 days from the Coeur d'Alene, ID 83815 date shown above. Prices quoted are for Ph: 208-772-9527 quantities shown. Fax: 208-772-3384 Email: solutions@mcallister.com URL: www.mcallister.com To Steven J. Visco Terms Offered: Net-30 LBL Materials Sciences Division Delivery: 12 Wks. ARO 1 Cyclotron Road Berkeley, CA 94720 (based on current workload) Ph: 510.486.5821 FOB: Factory, Coeur d'Alene, Idaho Fax: 510,486,4881

sjvisco@lbl.gov

item	Quantity	Description	Model #	Unit Price	Amount U.S.D.
1	1	SOFC Cell Assembly, CNC Program		750.00	\$750.00
2	1	Design	SOFC 5X5	760.00	\$760.00

5	5	Additional Center Plates (if ordered at same time)	\$135.00	\$675.00
-				
7	hank ye	ou for the opportunity to quote on this project!	Sales Tax	N//

Shipping at cost

Porto M. Allert Estimate authorized by Name:

Title: Robert McAllister, President

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

McAllister Build of 2-cell 5 x 5 cm SOFC Plate Stack

 Standardized test platform Allows testing of electrodes, seals, contact pastes, in a uniform manner Allows comparison of results between labs, universities, and industry •Fits in inexpensive furnaces Is not intended as a precursor to commercial device

\$800/ea. after initial build

LBNL Work on mSOFCs

- Build structure from low cost materials
- Obtain performance similar to anode supported cells
- Show long term stability (rapid progress)
- Work with cell manufacturers (licensing & sponsored research)

Rapid Thermal Cycling – Braze-Sealed Cell

150-735°C, ~500°C/min

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Anode supported tubular cell cannot tolerate rapid thermal cycling Cell failed, joint did not

Metal-supported cell/brazed joint is robust to thermal cycling

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATO

Infiltrated Electrodes Support High Power Density

Moist hydrogen fuel, pure oxygen (removes gas transport limitation)

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

	Max Power	Power at 0.7V
Temperature	(mW/cm2)	(mW/cm2)
650°C	982	726
700°C	>1300	993
750°C	>1300	>1300

1111111

BERKELEY LAB

BERKELEY NATIONAL LABORATORY

Work with manufacturer to ensure manufacturability as continue cell development

High Volume Porous Metal Media

Coal: kW to MW?

BERKELEY NATIONAL LABORATORY

BERKELEY LAB

Transitioning Technology to Private Sector

- LBNL is in discussions with cell/stack manufacturers for licensing infiltration and mSOFC technology for both planar and tubular configurations
- Wide range of IP being negotiated for SOFC, an coating for filtration (including spin-off applications for for coal gasification)
- Commercial interest in infiltration and mSOFC technology is rising quickly

Future Work

- Continued focus on infiltration technology as a means of improving cathode (and anode) performance at reduced cell temperatures
- Emphasis on baseline degradation studies on commercial cells as a metric of infiltration performance over time
- Continuing activities in technology transfer
- New stuff

Acknowledgements

This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Thanks to Lane Wilson and Wayne Surdoval for their input to the LBNL program

Good luck to Lane at BES