Mechanical Characterization of Interfaces in SOFCs

Edgar Lara-Curzio, Amit Shyam, Rosa Trejo, Scott Bell, Beth Armstrong, John Henry

Materials Science & Technology Division Oak Ridge, National Laboratory Oak Ridge, TN 37831-6062

> 8th Annual SECA Workshop San Antonio, Texas August 7-9, 2007

Outline

- Background
- Methodology
- Results
- Future Work

Background

- Residual Stresses
 - Fabrication
 - Induced by the formation of new phases
 - Changes in porosity (stiffness)
- Interfacial Electrical Resistance

Methodology

- Physical of Mechanical properties of contact paste
 - Elastic properties, thermal and electrical conductivity, thermal expansion, microstructure, uniaxial and biaxial strength as a function of processing conditions, temperature, time and thermal cycling
- Physical and Mechanical Characterization of contact paste-interconnect interface as a function of time, temperature and thermal cycling.
 - Energy Release Rate
 - Residual Stresses

The mechanical evaluation of thin, porous structures is challenging

We are using Resonant Ultrasound Spectroscopy to determine the elastic properties of LSM contact paste

Methodology (Elastic Constants)

Methodology (Elastic Constants)

Methodology (Elastic Constants)

QuickTime™ and a Microsoft Video 1 decompressor are needed to see this picture.

> QuickTimeThanda Microsoft Video, 1 decompressor are needed to see this picture.

Spectra of Coated/Uncoated Specimens

Position of resonant peaks change due to film sintering

• Coated+Sintered Specimen modes have a lower frequency by 0.822 %

Optimization reveals low value of LSM Elastic Modulus

Optimization was performed using ANSYS[™]

Iteration #	Range of E for Optimization	Range of v	Optimized E	Optimized v	RMS Error
1	10-50 GPa	0.20-0.40	10.00 GPa	0.258	1.49%
2	0.1-10.0 GPa	0.20-0.40	1.25 GPa	0.39	1.39%
3	0.1-10.0 GPa	0.25	1.28 GPa	0.25	1.39%

The value obtained for the elastic modulus of sintered LSM is low ~ <u>**1.25 GPa**</u> but in the range of values previously reported by Adamson* (~5 GPa)

* M. T, Adamson, Ph.D. Thesis, University of London (1997)

Interfacial Characterization of Cathode Contact Paste Interconnect

Sample Preparation

screen printer

- Crofer22
 - Cut and ground to either 30 or 15 mm in length and 300 μm in thickness with high values of flatness and parallelism
- Commercial LSM Paste
 - Applied by screen printing
 - Various thickness values

$$G = \frac{(1 - v^2) M^2}{2E} \left(\frac{1}{I_2} - \frac{1}{I_c} \right)$$

$$\begin{split} M &= Pl/2b\\ I_c &= h_1^3/12 + h_2^3/12 + h_1h_2(h_1 + h_2)/4\\ I_2 &= h_2^3/12\\ I_c &= \frac{2}{3}h_2^3 + \kappa(\frac{1}{12}h_1^3) + h_2^2h_1 + \frac{1}{2}h_1^2h_2\\ \kappa &= \frac{E_1(1 - \nu_2^2)}{E_2(1 - \nu_1^2)} \end{split}$$

Hofinger et al., International Journal of Fracture 92: 213-220, 1998.

Determination of Strain Energy Release Rate

Effect of sintering condition on Interfacial Fracture Toughness of LSM contact paste-Crofer 22

Sintered at 800°C for 1 hour

Mixed-mode cohesive/adhesive failure

Summary

- Techniques have been identified and used to determine the elastic properties of thin porous layers of LSM contact paste materials
- A methodology was established to determine the the fracture toughness of the interface between metallic interconnects and LSM contact paste.
- Fracture toughness was found to increase with sintering temperature and time.

Current and Future Work

- Working with PNNL team to characterize state-of-theart systems
 - Spinel-coated Croffer22
 - Cathode contact paste
- Continue activities to demonstrate feasibility of determining the elastic properties of thin coatings by RUS using well-characterized substrates
- Continue generating data (thermophysical and mechanical properties) to support on-going modeling efforts
- Investigate aging and thermal cycling effects on properties

