Anode and Cathode Blower Systems for SOFC

Mark C. Johnson

Phoenix Analysis & Design Technologies
Agenda

• PADT Background
• Summary of HARB program
• Transition from DG to FutureGen
• HARB II for FutureGen
• Component Development
• New blower: Small Multi-stage (SMS) blower
• Conclusions
Who is PADT?

• Incorporated in March 1994
 – Specialty blowers
 – Simulation services
 – Rapid prototyping
 – Medical instruments
 – Semiconductor equipment

 – Facilities
 – 24,000 ft² at ASU Research Park in Tempe, Arizona
 – 60% Office
 – 40% Shop & Lab

• People
 – 50 Employees
PADT Fuel Cell Programs

1998-2000
• 5 Roots Cathode blowers delivered
• 6 Axial Cathode blowers delivered

2001-2002
• VGEN, TURBOMIX, TRILOBE designed
• 18 blowers delivered

2003
• 28 blowers delivered

2004
• New HRB, SECA, TURBORAD developed
• 60 blowers delivered

2005
• HARB developed
• 120 blowers delivered

2006
• MINIRAD developed
• 150 blowers delivered
Summary of HARB Development

• Hot Anode Recycle Blower (HARB)
 • HARB I POC built and tested
 – Thermal segregation proven
 – Tested to ~ 600 C
 – Low efficiency, ~ 25%

• Transition to FutureGen
 – Program slowed down
 – Specifications reassessed

• Component development
 – BLDC Motor
 – Bearings
 – Pumphead evaluation

• HARB II Designed for FutureGen
FutureGen Approach: HARB II

- Consulted with most SOFC developers
 - Support from DOE
- Design Drivers for FutureGen
 - Robustness
 - Cost Control
 - High performance
 - Flexible
- Approach for HARB II
 - 700 C inlet
 - Scalable, serves 50 kWe – 500 kWe
 - Low cost mfg processes
 - Moderate RPM 10k – 20k RPM
 - 18” long x 10” dia.
 - Good efficiency ~ 55%, DC to fluid
- Patents being evaluated
 - Pumphead, bearings, cooling
HARB II: Risk Assessment

• Motor exposure to High Voltage/Temperature/Moisture
 – Potting with silicone/epoxies/urethanes help some
 – Canned motor is best solution

• Motor Hall sensor failure
 – Work towards sensorless control
 – Keep sensors out of process flow

• Condensation in bearing/motor cavity
 – Anode gases are ~ 50% mole fraction H₂O
 – Bearing/motor cavity may be below dew point

• Bearing Failure
 – Continual progress is being made (e.g. SiN balls)
 – Proper mounting and lubrication

• Impeller Creep
 – Control temps and stress

• Pumphead Corrosion, Chromium contamination

• Feedback: High temps add more risk
HARB II: Cost Assessment

- Bottom up cost estimate complete for HARB II
 - Based on quotes, scales, and estimates

- Feedback: Cost Drivers
 - Pressure Rise drives cost, higher stage count
 - Also higher power levels drive motor/controller cost up
 - Big benefit if inlet temp is below 500C. Enable SS solutions

<table>
<thead>
<tr>
<th>SUMMARY OF HARDWARE COSTS</th>
<th>PERCENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cool static component costs</td>
<td>12%</td>
</tr>
<tr>
<td>Cool rotating component costs</td>
<td>11%</td>
</tr>
<tr>
<td>Hot static component costs</td>
<td>31%</td>
</tr>
<tr>
<td>Hot rotating component costs</td>
<td>14%</td>
</tr>
<tr>
<td>Motor/Controller costs</td>
<td>32%</td>
</tr>
</tbody>
</table>
HARB II: BLDC Canned Motor

- Motor now being tested in PEM based HRB system
- Cost Control
 - Keep RPM down
 - Avoid nickel-iron laminations
 - Use silicon steel laminations
 - Injection moldable can designs
- Testing in fuel cell environment
 - High temperature, Water, Hydrogen, Voltage
 - Pressure cycling for 38368 cycles over 632 hours
- Thermal Shock Testing
 - -40 C to 140 C, 300 cycles
- Overpressure to ~ 8 Bar with no issues
HARB II: Motor Can Testing

Fuel Cell Chamber

<table>
<thead>
<tr>
<th>Material</th>
<th>HIPPIES Test</th>
<th>HIPPIES Test</th>
<th>HIPPIES Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial Test</td>
<td>304 hrs, 14199</td>
<td>632 hrs, 38368</td>
</tr>
<tr>
<td>Measured Leak Rate</td>
<td>Measured Leak Rate</td>
<td>Measured Leak Rate</td>
<td></td>
</tr>
<tr>
<td>Material (cc/sec) (cc/hr)</td>
<td>(cc/sec) (cc/hr)</td>
<td>(cc/sec) (cc/hr)</td>
<td></td>
</tr>
<tr>
<td>Ultem 30% filled</td>
<td>1.50E-05 0.054</td>
<td>2.40E-05 0.086</td>
<td>2.00E-05 0.072</td>
</tr>
<tr>
<td>Ultem (unfilled)</td>
<td>1.50E-05 0.054</td>
<td>3.10E-05 0.112</td>
<td>2.00E-05 0.072</td>
</tr>
<tr>
<td>Peek (unfilled)</td>
<td>1.50E-04 0.54</td>
<td>1.20E-05 0.043</td>
<td>7.40E-06 0.027</td>
</tr>
</tbody>
</table>

THERMAL SHOCK

<table>
<thead>
<tr>
<th>Material</th>
<th>Thermal Shock</th>
<th>Thermal Shock</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial Test</td>
<td>300 cycles</td>
</tr>
<tr>
<td>Measured Leak Rate</td>
<td>Measured Leak Rate</td>
<td></td>
</tr>
<tr>
<td>Material (cc/sec) (cc/hr)</td>
<td>(cc/sec) (cc/hr)</td>
<td></td>
</tr>
<tr>
<td>Ultem 30% filled</td>
<td>1.50E-05 0.054</td>
<td>1.60E-05 0.065</td>
</tr>
<tr>
<td>Ultem (unfilled)</td>
<td>1.50E-05 0.054</td>
<td>2.20E-05 0.079</td>
</tr>
<tr>
<td>Peek (unfilled)</td>
<td>6.75E-05 0.243</td>
<td>8.20E-06 0.03</td>
</tr>
</tbody>
</table>
HARB II: Bearing Development

- 2 Bearing Rigs built
 - Running non-stop
- Accelerated life testing
 - Need 40000 hrs of life
 - 2 year program
- Working with industry veteran
 - 40 years of experience
- An additional 2 rigs now being built
 - 4 rigs total
Impeller Selection

• 4 Configurations considered
 – Cast regenerative
 – Cast single stage centrifugal
 – Single stage sheet metal centrifugal
 – Multi-stage sheet metal centrifugal

• Regenerative is inefficient
 – Axial clearance is critical
 – Temperatures, transients

• Cast approach slow/expensive
 – Got 2 Quotations (Howmet, Miller)
 – Casting cost over $2000 in low volume
 – Post machining greater than $2000
 – Long lead times, ~ 6 months
Impeller Selection

- Single stage sheet has high stresses
 - High tip speed required to make DP
 - Bore stresses exceed 30 ksi
 - Haynes 230 will have limited life
Multi-Stage Impeller Selected

- Multi-stage Impeller offers solution
 - Tip speed way down. Quiet.
 - Bore stresses lower than 10 ksi
 - Flexible: Stage count easy to change
 - Very low cost
- Efficiency proven on MINIRAD program
 - ~43% overall efficiency
 - Expect ~55% for HARB II
 - Patent under evaluation
New Developments

• PADT has chosen to split program
 – HARB II for FutureGen
 – Small Multi-Stage (SMS) blower for DG
 – Both blowers will use same pumphead technology
• HARB II now in final design
 – Hardware in ~ 6 months
• SMS Blower
 – Will provide anode recycle
 – ~ 200C
 – Same multi-stage approach
 – Same motor approach
 – Design restricted to very low cost mfg processes
 – Flexible
Acknowledgements

• SOFC developers

• NETL support
 – Chuck Alsup
 – Travis Schultz
 – Heather Quedenfeld

• UCI
 – Jack Brouwer

• Dawnbreaker Commercialization Assistance
 – Jenny Servo, Bob Larsen, Patty Heckman

• PADT Blower development team