## FutureGen Status



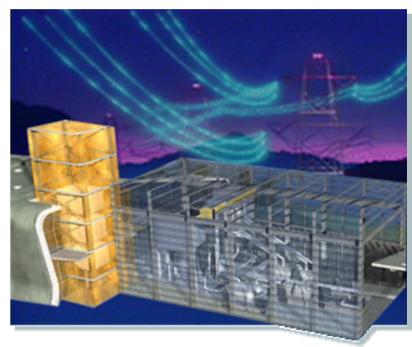
## 7<sup>th</sup> Annual SECA WORKSHOP & PEER REVIEW

September 12-14, 2006

Philadelphia, PA

Joseph P. Strakey

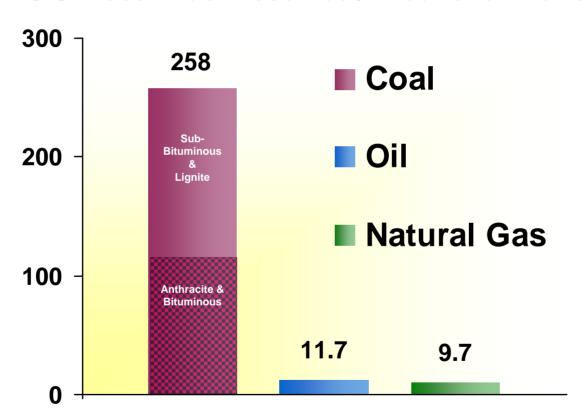
National Energy Technology Laboratory
U. S. Department of Energy





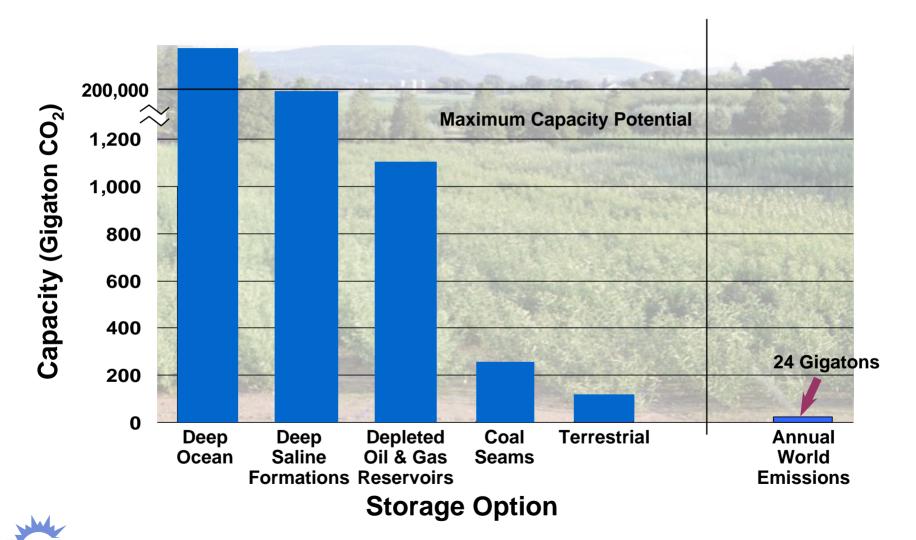

## **FutureGen**

World's first near zero-emission, coal-based power plant to:


- Pioneer advanced hydrogen production from coal
- Emit virtually no air pollutants
- Capture and permanently sequester carbon dioxide
- Integrate operations at fullscale – a key step to proving feasibility






## 250 Year Supply of Coal at Current Demand Levels

#### U.S. Fossil Fuel Reserves / Production Ratio

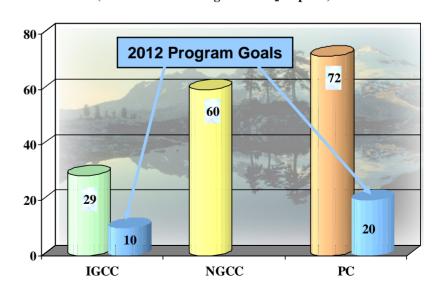




# Large Potential Worldwide CO<sub>2</sub> Storage Capacity



## **Current "Best Case" Technologies Costly**


Using State-of-the-Art Scrubbing Technologies

- 5 to 30% Parasitic energy loss
- 30 to 100% Increase in capital cost
- 25 to 100% Increase in cost of electricity

## Effect of CO<sub>2</sub> Capture on Capital Cost (% Increase Resulting From CO<sub>2</sub> Capture)

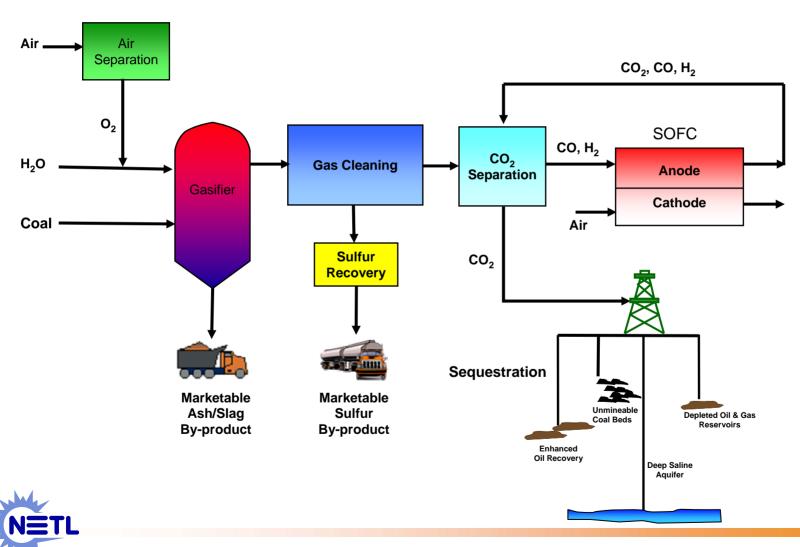
100 80 80 40 20 IGCC PC NGCC

## Effect of CO<sub>2</sub> Capture on Cost of Electricity (% Increase Resulting From CO<sub>2</sub> Capture)



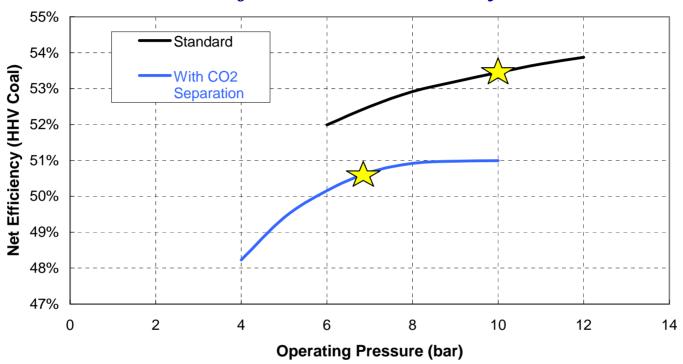
Strakey - SECA - 09-13-06

## Why IGCC/IGFC?




# R&D in the pipeline is reducing cost & improving efficiency

- Gasifier/refractory material
- Low-cost oxygen
- Gas separation membranes
- Fuel cell power
- Environmentally superior coal-based power
- Easily adapted for CO<sub>2</sub> sequestration
- High efficiency
- Fuel & product flexibility
- Promising "coal-to-hydrogen" option




# FutureGen IGFC with Sequestration



## **GE IGFC Study**

## Performance Summary



- 53.4% (HHV) Possible with IGFC
- CO<sub>2</sub> Separation penalty 2.7 points



# FutureGen Will Build Upon Experience from Commercial-Scale Coal-Based IGCC Power Plants

#### Wabash River

- W. Terre Haute, IN
- 296 MWe (gross); 262 MWe (net)
- Operations began 11/95



### **Tampa Electric**

- Mulberry, FL
- 315 MWe (gross); 250 MWe (net)
- Operations began 9/96





# FutureGen Will Build on Two Non-Integrated One Million TPY CO<sub>2</sub> Sequestration Projects

### Weyburn CO<sub>2</sub> EOR Project

- Pan Canadian Resources
- 200-mile CO<sub>2</sub> pipeline from Dakota Gasification Plant
- Enhanced Oil Recovery in Canada

### Sleipner North Sea Project

- Statoil
- CO<sub>2</sub> sequestered Utsira Formation
- Currently monitoring CO<sub>2</sub> migration
- Separates CO<sub>2</sub> from natural gas
- \$36–50 / tonne CO<sub>2</sub> tax







# Cutting-Edge Candidate R&D Technologies for *FutureGen*

# Traditional Technology **Research Invention Examples** Commercial Gasifier $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ Advanced Transport Reactor Cryogenic Air Separation $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ O<sub>2</sub> Membranes Gas Stream Clean-Up $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ Warm Gas Cleanup - Transport Desulfurizer Amine Scrubbers $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ H<sub>2</sub> Membranes, "Clathrate" CO<sub>2</sub> Syngas Turbine $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ Ultra-Low NO, Hydrogen Turbine Fuel Cell (\$4,000/kW) $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ SECA Fuel Cell (\$400/kW Design) EOR Based $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ Sequestration Technology Plant Controls $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ "Smart" Dynamic Plant Controls & CO<sub>2</sub> Management Systems System Integration $\rightarrow$ $\rightarrow$ $\rightarrow$ $\rightarrow$ "First of a Kind" System Integration



## FutureGen Industrial Alliance, Inc. Signed Cooperative Agreement with DOE on Dec. 2, 2005

- **American Electric Power**
- **AngloAmerican**
- **BHP Billiton**
- **China Huaneng Group**
- **CONSOL Energy**







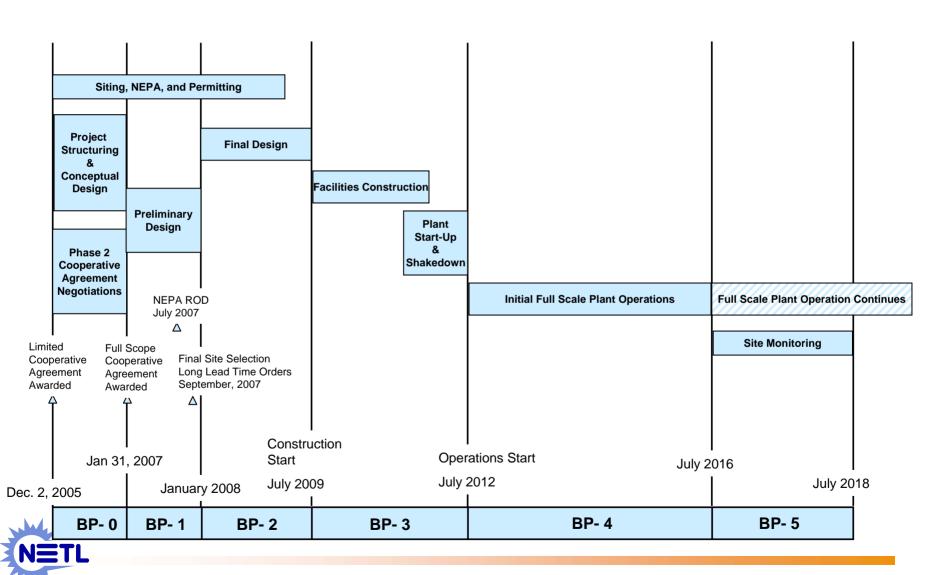















- **Peabody Energy**
- PPL
- **Rio Tinto Energy America**
- **Southern Company**



## FutureGen Project Schedule



## FutureGen Funds / Estimated Costs

| Cost Elements                         | \$ Million |
|---------------------------------------|------------|
| Plant Definition, Baselining & NEPA   | 81         |
| Plant Procurement & Construction      | 480        |
| Shakedown & Full-Scale Operation      | 188        |
| Sequestration (Design & Construction) | 191        |
| Site Monitoring                       | 10         |
| TOTAL                                 | \$950      |

DOE 620 Industry 250 International 80



## FutureGen Status

- Industry-led cooperative project with government oversight & international participation
- Industry will choose project site, backbone technologies, etc.
- DOE has invited other nations to join FutureGen
- Gov'ts of India & South Korea have each pledged \$10 Million





# FutureGen Public Scoping Meetings



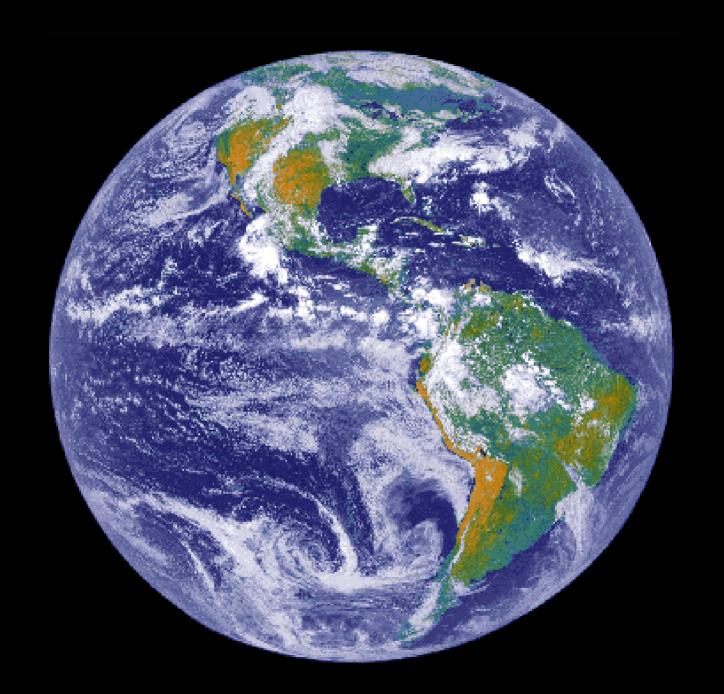
*Jewett, TX – Aug. 22, 2006* 

Odessa, TX – Aug. 24, 2006

Tuscola, IL – Aug. 29, 2006

Mattoon, IL - Aug. 31, 2006






### Visit the FutureGen Websites



- NETL website:
  - www.netl.doe.gov
- Office of Fossil Energy website:
  - ww.fe.doe.gov
- FutureGen Alliance website:
  - www.futuregenalliance.org



