Experimental/Theoretical Studies Aimed at Development of CarbonTolerant Catalysts

Eranda Nikolla, Adam Halowieski, Suljo Linic

Department of Chemical Engineering University of Michigan, Ann Arbor, MI

Conclusion

- First principles approach to the development of novel catalysts
- Carbon chemistry on Ni surface
 - Can be modified by alloying
 - Respective rates of C-O and C-C bond formation impact the extent of carbon poisoning
 - Sn/Ni surface alloy is a promising carbon-tolerant catalyst

Fuel Cell Technology

- Development of efficient energy conversion systems
- Low temperature fuel cells (PEMFC)
 - CO poisoning, slow kinetics, over-potential losses
- High temperature fuel cells (SOFC)

- Limitation: Deactivation of Ni/YSZ anode catalysts
 - Carbon poisoning
 - Sulfur poisoning

Carbon Poisoning of Ni

- Monometallic Ni catalysts
 - Deactivate severely during steam reforming of hydrocarbons
 - Extended carbon structure formed: graphitic layers, nano-tubes, ...

Objectives

- Utilize first principles calculation (DFT) to study
 - Carbon chemistry over Ni surfaces
 - Can we understand and control carbon chemistry and therefore affect the deactivation?
 - Ni alloying?
- Steam reforming of methane and isooctane using Ni and Ni alloys
- Catalysts characterization

DFT Methodology

- Accurate and efficient first-principles calculations
 - Adsorption energies, activation barriers, vibrational and electronic spectra, ...
 - Model systems
 - Ni(111) and Ni(111) alloys

Steam reforming over Ni(111)

 DFT calculated elementary step reaction energies for methane steam reforming on Ni(111)

Carbon Chemistry

Can be described by a mechanism of competing pathways

$$\begin{array}{c} C_nH_m \\ + \\ H_2O \end{array} \right\} \longrightarrow nC^* + (m+2) \ H^* + O^* \\ \end{array}$$
 c-O, CO, CO₂
$$\begin{array}{c} C-O, CO, CO_2 \\ \hline \\ C-C \end{array}$$
 sp2 carbon deposits

The C-O and C-C bond formation is important

DFT: C-O and C-C bond formation on Ni(111)

* Abidil-Petersen, J. Phys. Rev. B, 2006

Formation of C-C and C-O bonds are kinetically comparable on Ni(111)

DFT: C-O and C-C formation on Sn/Ni(111) alloy

- C and O diffusion become kinetically important
- The barrier for C-C bond formation is much higher than for C-O bond formation

DFT: C-O vs. C-C formation

- C and O compete to react with C on Ni(111)
- Sn alloying increased the barrier for C-C bond formation more than for C-O bond formation

DFT: Sn/Ni formation energy

- Can we synthesize Sn/Ni surface alloy?
- DFT calculated formation energies

```
E = E(Sn/Ni\_slab) - E(Ni\_slab) - e(Sn) + e(Ni)
```

- Sn/Ni surface alloy
 - -2.04eV/A²
- Sn/Ni bulk alloy
 - 1.67 eV/A²
- Ni surface
 - 0 eV/A²
- There is a thermodynamic driving force to form Sn/Ni <u>surface alloy!</u>
 Michigan Engineering

Experiments: Catalyst Synthesis

- Support
 - 8%YSZ synthesis: Co-precipitation method
- Ni-YSZ
 - Ball milling method
 - 30 vol% Ni loading
 - Sintering
 - Reduction: 30% H₂/N₂ at 900°C for 5 hrs
- Sn impregnation
 - Incipient wetness

Sn/Ni Characterization

STEM/EDS experiments

EDS: Line Scan

Steam reforming of methane on Ni/YSZ

- Reaction Conditions
 - Temp = 800°C
 - GHSV=50,000 h⁻¹
 - Reduction=5hrs at 900 °C

Steam Reforming of Methane

Reaction Conditions

- S/C =0.5
- Operating Temp = 800°C
- GHSV = $50,000 \text{ h}^{-1}$

Sn/Ni alloying results in improved catalyst stability

Steam Reforming of Isooctane

Michigan **Engineering**

XRD: Post SR of Isooctane

- No graphite was detected in the case of Sn/Ni alloy
 - Similar results were obtained for methane steam reforming

SEM/TEM: Post SR of Isooctane

XPS: Post SR of Isooctane

- Ni/YSZ
 - 2 C peaks detected
 - No Ni peak detected

- Sn/Ni/YSZ
 - No carbon peak
 - Strong Ni peak signal

Conclusion

- First principles approach to the development of novel catalysts
- Carbon chemistry on Ni surface
 - Can be modified by alloying
 - Respective rates of C-O and C-C bond formation impact the extent of carbon poisoning
 - Sn/Ni surface alloy is a promising carbon-tolerant catalyst

- Department of Energy (DOE-NETL)
 - DE-FC26-05NT42516
- Johannes Schwank
- Kai Sun

