

Oxidation Resistant, Cr retaining, Conductive Coatings on Metallic Alloys for SOFC Interconnects

Dr. Vladimir Gorokhovsky
Director of Research and Development
Arcomac Surface Engineering, LLC
Bozeman, MT

In collaboration with: MSU; PNNL; LBNL; and NASA-GRC.
This Program is Supported by DoE/SECA Contract
No. DE-FC26-04NT42225

Collaborative Team:

- Arcomac Surface Engineering, LLC
 - Dr. V. Gorokhovksy; Mr. D. VanVorous
- Montana State University
 - Drs. M. Deibert, R. Smith, A. Kayani; Mr. P. Gannon
- PNNL
 - Drs. Z. Yang, J. Stevenson
- NASA-Glenn Research Center
 - Dr. S. Sofie
- LBNL
 - Drs. S. Visco, C. Jacobson, H. Kurokawa

Presentation Outline

- SOFC Metallic Interconnects: Needs in Surface Engineering Technology
- Arcomac's Technical Approach: Dual Segment Multilayer Cermet Coatings by Filtered Arc Assisted Vapor Deposition
- Results and Discussion: Coated vs. Uncoated Crofer 22 APU
- Summary and Path Forward

Uncoated Crofer 22 APU

Polished Coupon Surface Before Oxidation Exposure

Coupon Surface After 2000+hrs
Oxidation at 800C in Air

Uncoated Crofer Oxide Scale Spallation

Secondary Electron Images Illustrating Scale Spallation

Backscattered Electron Image Illustrating Scale Spallation, Emphasizing Crofer Substrate

Arcomac's Technical Approach

- 2-Segment Coating Concept:
 - 1st Segment nanolaminated CrCoON/AION (oxidation resistant diffusion barrier, bond coating)
 - 2nd Segment columnar grain (Mn,Co)₃O₄ (electrically conductive, Cr-retaining spinel)
- Hybrid Surface Engineering Techniques
 - Coating deposition process combines conventional and advanced evaporation and ionization sources (filtered arc deposition (FAD) and filtered arc-assisted e-beam evaporation physical vapor deposition (FAD-assisted EBPVD))
- Simulated Performance Evaluation
 - Testing for SOFC compatibility: HT oxidation; electrical conductivity; and prototypical performance

Large Area Filtered Arc Deposition (LAFAD™) Technology:

average direct kinetic energy of ions in filtered arc beams ranges from 40 to 200eV

New Generation of PVD Coating Technology: Filtered Arc Plasma Source Ionized Deposition (FAPSID) Surface Engineering Process

Schematic Illustration of One Embodiment of the FAPSID Process: Arcomac's Hybrid Filtered Arc-Assisted FA/EBPVD Surface Engineering System:

- Industrial Scale Uniformity and Productivity
- Large Area Filtered Arc (LAFAD) CrCoAlON ~1um/hr
- Filtered Arc-Assisted FA/EBPVD (Mn,Co)₃O₄ ~6um/hr @ 300W EB Power

Advantages of Large Area Filtered Arc-EBPVD Technology:

- Atom by Atom Deposition
- Process Produces Defect Free Coatings: no Voids, Porosity or Macroparticles
- High Ionization and Activation of Metal-Gaseous Plasma
- Capable of Mixing Virtually any Composition of Elements in Plasma Flow Prior to Deposition
- Capable of Combinatorial Processes Utilizing any Plasma Assisted PVD and Low Pressure CVD Processes in One Universal Surface Engineering Chamber Layout
- Multi-Phase, Ultra-Fine, Polycrystalline or Amorphous Coating Structure
- Nano-scale Coating Architectures
- Capable of Supporting Duplex and Triplex Plasma Immersion Surface Engineering Processes in One Vacuum Cycle
- Industrial Scale Uniformity and Productivity
- Enhanced Capabilities over Conventional Coating Technologies at Lower Cost
- Environmentally-Friendly, Dry Process with Negligible Hazardous Byproducts

RBS Concentration Profiles: Before(top) after (bottom) 4 hrs @ 800 C in air

Oxidation kinetics of St.St. with Filtered Arc CrAlN coatings of various architectures

Early Stages of Oxidation by RBS: Control of Oxidation Protection Properties by Varying Coating Composition and Architecture

Filtered Arc CrAION nanolaminated coating demonstrates retention of its barrier properties during 25hrs of oxidation @ 800C in air

25nrs of oxidation @ 800C in air

12000

10000

6000

Dep to (10¹⁵ a toms/cm²

8000

Filtered Arc CrAIN nanolaminated coating does not lose entire N content during 25hrs of oxidation @ 800C in air

SEM Cross-section post ASR

Forming TGO on Uncoated Crofer 22APU after ~750hrs of oxidation

Testing

Forming TGO on CrAlON Filtered Arc Coated Crofer 22APU after ~1000+ hrs of oxidation

Scale ~3-5um

~750 hrs @800°C

Coated Crofer 22APU

Scale/Coating ~1um

1000+ hrs @800°C

Coating Adhesion Assessment - Rockwell 145kg Indentations

(Co,Mn)₃O₄ Single Segment Coating Recrystallization

As deposited, amorphous or ultrafine polycrystalline (Co,Mn)₃O₄ single layer coating

Post 2000+ hrs oxidation, 800C in air, polycrystalline (Co,Mn)₃O₄ single layer coating

Surface Composition (EDS) = \sim 22%Co,Mn, bal. O

CrON/AION+(Co,Mn)₃O₄ Dual Segment Coating Recrystallization

As deposited, amorphous or ultrafine polycrystalline CrON/AION + (Co,Mn)₃O₄ dual segment coating

Post 2000+ hrs oxidation, 800C in air, polycrystalline CrON/AION + (Co,Mn)₃O₄ dual segment coating

CrON/AION+(Co,Mn)₃O₄ Dual Segment Coating Cross-Section: Post 2000+ hrs oxidation at 800C in air

CrON/AION+(Co,Mn)₃O₄ Dual Segment Coating Cross-Section: Post 2000+ hrs oxidation at 800C in air (Cont.)

ASR of uncoated Crofer 22 APU

ASR of Filtered Arc CrON/AION bond segment coating on Crofer 22 APU

PNNL Screen Printed (Mn,Co)₃O₄ Coating Results

PNNL testing results: ASR of Crofer 22 APU coated by various PVD coating techniques

(Ag paste contact)

ASR testing results (MSU)

SECA 6th Annual Workshop

Summary

- Hybrid Filtered Arc/EBPVD process is highly productive and cost effective way to fabricate protection coatings for metallic IC
- PVD coating provides high uniformity over large coating areas
- Two-segment CrAlON + (Mn,Co)3O4 coating provides excellent adhesion, HT spallation resistance and serves as a barrier against oxygen inward and chromium outward diffusion, blocking growth of TGO and preventing chromium migration onto the surface

Future Works

- Optimizing the hybrid FA/EBPVD process to better control coating structure and morphology. This includes both coating composition and architecture optimization
- Evaluate long term stability under SOFC operating conditions
- Investigate and optimize the thermal cycling performance
- The capability for mass production of the coatings will be demonstrated to meet performance and cost targets using newly manufactured 200 kW evaporation power FA/EBPVD surface engineering system at Arcomac

Acknowledgements

- DoE/NETL: Travis Shultz and Lane Wilson
- DoE/PNNL: Gary McVay and Larry Pederson
- MSU/HiTEC: Lee Spangler