Thermochemically Stable Sealing Materials for Solid Oxide Fuel Cells

Richard K. Brow

Materials Science & Engineering Department The Graduate Center for Materials Research
University of Missouri-Rolla
Rolla, MO 65409

6th Annual SECA Workshop Pacific Grove, CA April 20, 2005

Acknowledgements

This research was primarily done by

- Dr. Signo Reis and Mr. Teng Zhang (UMR)
- · Ron Loehman, Sandia National Labs

Thanks to Xiao Dong Zhou, Piotr Jasinski, Harlan Anderson, Clarissa Vierrether (UMR)

The financial support of the Department of Energy (SECA project NT42221/Travis Schultz program manager) is gratefully acknowledged.

Designing glasses for SOFC seals is a significant challenge

Function:

- Prevent mixing of fuel/oxidant within stack
- Prevent leaking of fuel/oxidant from stack
- Electrically isolate cells in stack
- Provide mechanical bonding of components
 Challenges:
- Thermal expansion matches to a variety of materials
- Relatively high operational temperatures (>700°C)
 - Long lifetimes (>10000's hrs)
 - Maintain stability over range of P_{O2} , P_{H2O}
- Relatively low sealing temperatures (<900°C)^{Fuel Flow}
 - Avoid altering other SOFC materials

For some designs, glass-ceramics may be suitable

Ba-silicate glass-ceramics have shown promise

The problem, as seen by 'a glass guy'

1. Challenging compositional design problem

- Uncommon combination of properties
- Investigate uncommon families of glasses

2. Glass-ceramics are a likely option

 Crystallization studies- seal processing and longterm material stability

3. Interfacial chemistry

- Glass-metal reactions
- Material stability/volatility
 - Thermochemical stability

Our compositional design is based on unusual glass structures

"Invert Glasses": discontinuous silicate anions tied-together through modifying cations.

·Greater CTE's

More fragile viscosity behavior'shorter' glasses

·More 'basic' reaction chemistries

- •Metasilicates (chains): [O]/[Si]~3.0
- Polysilicates (short chains):[O]/[Si]>3.0
- Greater CTEs from polysilicate crystalline phases

SiO₄ tetrahedron

- Bridging oxygen ion
 - Conventional modifying ion
- · Si-ion
- O Non-bridging oxygen ion

UMR glass-ceramics under development

RO-silicate compositions with desirable thermal properties

Thermal properties of sealing glasses are controlled by the ZnO/RO ratio

Thermal properties of sealing glasses are controlled by the ZnO/RO ratio

Thermal properties of sealing glasses are controlled by the ZnO/RO ratio

Representative crystalline phases in the UMR glass-ceramics

Pyrosilicates

- CaSrAl₂SiO₇, Ca₂ZnSi₂O₇
- Orthosilicates
 - Sr₂SiO₄, Zn₂SiO₄
- Composition is most important parameter for final phase distribution.

Dilatometry indicates good CTE-match with YSZ

Dilatometry indicates good CTE-match with YSZ

Glass-ceramic microstructure evolves with time

DTA provides information about sealing glasses

DTA provides information about the nature of the residual glass

DTA results are used for crystallization kinetic studies

G#27 sealing glass treated in air

Avrami equation: (1-x)=exp(-Ktⁿ);

n=1: surface crystallization

DTA results are used for crystallization kinetic studies

Glass #36 is less prone to crystallization at 750°C

Glass stability in wet forming gas has been evaluated

Glass-ceramics are more stable in forming gas than glasses

Test seals have been prepared with SOFC coupon materials

- ·Glass pastes
 - ·Glass powders, ~45mm & <5mm
 - PVB binders
 - Binder burn out: 500°C/air;glass
 - sealed: 850°C/argon
 - ·Glass thickness: 20-400mm
- ·Interconnect alloy: E-bright
 - ·Cr-ferritic steel (26% Cr)
 - CTE ~ 11.7 ppm/°C
- •YSZ coupons $(8\%Y_2O_3)$
 - ·CTE ~ 10 ppm/°C

"As sealed" Glass 25 paste with YSZ and E-bright substrates (850°C/4hrs, Ar

Test seals have been prepared with SOFC coupon materials

- •Glass pastes
 - •Glass powders, ~25µm
 - Interconnect alloy:Crofer
 - ·Cr-ferritic steel
 - CTE ~ 11.9 ppm/°C
 - After sealing:
 - •Glass-ceramic thickness: 100-200µm

Glass 27 with Crofer APU22 after four days at 750°C in air

SECA Workshop, 4/20

Glass #27 reacts with E-brite alloy at 950°C

The glasses do not appear to react with anode materials

Glass-metal adhesion strength measured by pin-pull test

Romulus adhesion testing machine-Quad Group Inc.

Sample	Failure Stress (MPa)	Notes
G#27/Crofer APU 22	39.5 ± 4.2	Glass failure
<i>G</i> #27/43055	44.7 ± 1.9	Glass failure
G#36/Crofer APU 22	10.0 ± 0.8	Interface failure
<i>G</i> #36/430 <i>SS</i>	19.2 ± 0.7	Interface failure

Research Plans

Compositional development

- ·Crystallizing and non-crystallizing compositions
 - ·Viscosity and crystallization kinetics
- ·Design guidance for desirable properties

Seal studies

- ·Glass-metal reaction chemistry
- ·Hermeticity and cell tests
 - ·Univ. Cincinnati
 - ·Univ. Connecticut
 - ·NexTech, et al.

SOFC Seal Summary

- SOFC seals offer an interesting materials challenge
- 'Invert' polysilicate compositions have promising combinations of properties
 - 'Invert' glass-ceramics can be designed with thermal and chemical properties desired for some SOFC seal designs.
 - Thermo-chemical and thermo-mechanical stabilities are critical for long-term applications.
 - Vaporization
 - · Interfacial reactions

Thank you for your attention!