

Presented at SECA Annual Workshop and Peer Review Meeting May 11-13, 2004
Boston, MA

SECA Program at Siemens Westinghouse S. D. Vora

2004

Siemens Westinghouse Power Corporation May 11, 2004

DOE Program Manager Don Collins

SIEMENS

SIEMENS

Siemens AG Power Generation

Stationary Fuel Cells

- 150 Employees
- Chartered to Commercialize SOFC Power Systems for the Distributed Generation Market
- Focused on Seal-less, Cathode Supported Tubular SOFC Design
- YSZ Electrolyte, 1000 °C Operating Temperature
- Expertise in
 - ♦ High Temperature Materials
 - ◆ Ceramic Processing, Ceramic Powder, Cell and Module Manufacturing
 - ◆ Electrochemistry and Cell testing
 - ♦ Hydrocarbon Reformation
 - **♦ BOP Assembly**
 - **♦** Systems Testing

Stationary Fuel Cells - Accomplishments

- Developed State-of the art, 150 cm Active Length (834 cm² active area), Cathode Supported Tubular SOFCs
- Demonstrated Lifetime of >60,000 Operating Hours with Voltage Degradation Rates < 0.1% per 1000 Hours and Thermal Cycle Capability of >100 Cycles
- Developed Internal Reformation Technology
- Designed, Manufactured and Tested Complete Atmospheric and Pressurized Hybrid SOFC Power Systems
- Replaced Electrochemical Vapor Deposition (EVD) process with Atmospheric Plasma Spray (APS) process for deposition of cell components

Stationary Fuel Cells - Accomplishments

<u>athode</u>

xtruded

าd

intered

, EL nd node

PS

Voltage Stability of Tubular APS Cell

Stationary Fuel Cells - Accomplishments

APS cell performance

- Demonstrated performance equivalent to EVD cells
- Demonstrated thermal cyclic stability can withstand multiple thermal cycles
- Demonstrated voltage stability voltage decline of approx. 0.1% per 1000 hours

Highest Priority for Commercialization

Lower Product Cost (\$/kWe)

Cost | (\$/unit)

Power Density (kWe/cell)

SECA Program Objectives

Develop SOFC System Prototypes with a net Power Output of 5-10 kWe for Stationary and Transportation Applications with a Cost Target of < \$ 400/kWe.

Projected Fuel Cell Market in 2012

Projected Fuel Cell Market in 2012...

\$1 Billion

Current SFC Focus

SECA

Emerging Market Segments Cost Target \$400/kW

(1) Auxiliary Power Units

Siemens Westinghouse SECA Team

Technology Team Customer / Market Team

	Remote/Residential	Transportation	Military
Siemens Westinghouse	Fuel Cell Technologies	Ford	Newport News
Fuel Cell Technologies	Lennox	Eaton	Eaton
Blasch Precision Ceramics	Trane		

Key Team Members provide Market Access and Industry Specific Expertise

To broaden Market Opportunities and New Applications

SECA Program Technical Approach

- Improve Cell Performance through High Power Density (HPD)
 Cathode Supported Planar Cell New Cell Geometry
- Improve Cell Performance by Reducing Activation Polarization at Interfaces - New Cell Materials
- Lower Operating Temperature (800°C) New Cell Materials
- On-cell Reformation Elimination of Internal Reformers
- Low Cost, High Volume Manufacturing Process Development
- Low Cost Module Materials Helped by Lower Operating Temperature
- BOP Design Simplification Parts Elimination

SECA -10 Year Roadmap

APU Applications

High Power Density (HPD) Cathode Supported Seal-less Planar Concept

- Maintains Seal-less design
- Eliminates air feed tubes
- Reduction in resistance
- Increase in cell power (power density and surface area)
- More compact stack

Development of HPD Cell Design

- Computational model of HPD cell cross-sectional geometry developed to optimize cell design and dimensions
- Performance estimated by Electrochemical modeling – NETL/FLUENT SOFC model
- First level selection of cell geometry based on performance and cell economics
- Second level selection of cell geometry based on structural integrity under predicted mechanical and thermal stresses

HPD Cell Design Options

Current Density Distribution in HPD Cells

HPD Cell Design

- Selected HPD5 as a baseline to develop cell and bundle fabrication processes and conduct electrical performance testing
- Selected HPD10 to explore the upper bounds of cell fabrication
- Reduced HPD active cell length to 75 cm to maintain same active area as 150 cm cylindrical cells for ease of performance comparison

HPD Cell Fabrication

- Developed extrusion method for cathodes. Closed end cap can be attached or integral
- Dedicated APS robotic system installed
- Developed APS parameters for interconnection, electrolyte (YSZ) and the anode
- Fabricated bundles with up to 11 HPD5 cells
- Additional process optimization/cost reduction opportunities being explored

Robotic APS System

Tubular and HPD Cells

Performance Comparison – Cylindrical Vs. HPD5

= 1000 C % Fuel Utilization

% higher powerity relative todrical cells (atV) demonstratedIPD5

et in 2012: 6 higher er density ive to drical cells HPDX

HPD5 – Voltage Stability

able Voltage 1000 C

รเ ntinues

HPD5 Cell Bundle - 11 Cells

Cell Power Enhancement

<u>ective</u>

ove 900 °C ormance of electrolyte

- Evaluating Controlled Atmospheric Plasma Spraying (CAPS) to lower post plasma spray densification temperature
- Evaluating composite interlayers at the cathode-electrolyte interface to reduce activation polarization
- Evaluation carried out on cylindrical cells results are applicable to HPD cells

Electrolyte Microstructure Comparison

Electrolyte

Interlayer

Cathode

EL Densification - 1250°C, 6 hrs

APS + Composite Interlayer EL Densification - 1350°C, 6 hrs

Performance Comparison - APS + Composite Interlayer Vs. CAPS + Composite Interlayer (Cylindrical Cells)

6 higher power ity relative to (at 0.65 V and C) demonstrated APS + cathode ayer

icability to HPD needs to be onstrated

Low Temperature (800 °C) Electrolyte

- Sr- and Mg- doped LaGaO₃ (LSGM)
 - APS selected to deposit dense layer
 - Cathode, interconnection, anode and interlayer compositions compatible with LSGM developed
- Scandia doped Zirconia (ScSZ)
 - APS selected to deposit dense layer

LSGM As Low Temperature Electrolyte

- High Electrolyte Oxygen-ion Conductivity: σ(LSGM@800°C)= σ(YSZ@1000°C)
- Excellent Chemical and Structural Compatibility with Perovskite Cathode Substrate
- Higher Cell Performance over a Wider Temperature Range
- Potential of Cost Reduction in Module Components due to Lower Operating Temperature

Low Temperature Electrolyte - Status

- Developed a process to make plasma sprayable LSGM powder
- Developed understanding of issues to be resolved to obtain a dense LSGM layer on cathode substrate
- Additional work needed before a full length cell with LSGM electrolyte can be fabricated

- Cylindrical cells fabricated with ScSZ electrolyte
- Performance under evaluation

Low Cost High Volume Manufacturing

- Net shape forming of stack components (Blasch Ceramics)
- Sintering of interconnection, electrolyte and anode
 - Higher Material Utilization
 - Reduced Manufacturing Steps
 - Higher Throughput
 - Lower capital Investment

Feasibility studies initiated

Proof-of Concept (POC) System

- Primary objective is to successfully demonstrate the operation of an HPD cell stack
- Stack: SWPC Scope; BOP:FCT scope
- 44 HPD5 cells YSZ electrolyte
- Split stack generator
 - > Two Stacks
 - > Two cell bundles per stack
 - > 11 cells per bundle
- Target power: 5 kWe net AC
- Target efficiency: 40%
 - > Low PCS efficiency: 85% vs. 92% for larger systems
 - > Relatively higher BOP power consumption than larger systems
- Internal Reformation
- Selected stack components will be fabricated by Blasch Ceramics using net shape forming
- Modular Design Approach
 - Streamlined assembly process, higher level of parallel effort
- Target Start-up: Fall 2004

BOP Design, Testing and Assembly (FCT)

- Incorporated Lessons Learned from Alpha Demonstration Units with Cylindrical Cells.
- Beta Unit with Full Length (834 cm² active area) Cylindrical Cells Designed and Tested with an Objective to Maintain Commonality Between Beta and SECA Units.

Alpha → Beta → SECA

Alpha

Volume: 1.90 m³

88 Cylindrical Cells (75 cm Active Length)

2002-2003

Beta

Volume: 1.90 m³

48 Cylindrical Cells (150 cm Active Length) 2003-2004

SECA POC

Volume: 0.86 m³

44 HPD5 Cells

2004

SECA Product Plan

Summary

- Contract for First 2 years Signed in September 2002
- Fabricated HPD5 cells and demonstrated higher power density over cylindrical cells
- Optimization of HPD cell design through modeling on-going
- HPD cell bundling process developed Further cost reduction opportunities explored
- Increased power density of YSZ electrolyte cells at 900 °C through improved cathode-electrolyte interface - Further reduction in operating temperature with YSZ electrolyte possible
- Alternate low temperature (800 °C) electrolytes under evaluation
- POC design completed
- Use of low cost module materials planned in POC
- BOP of POC being tested in FCT Beta units
- Planned POC startup: Fall 2004

Future Work (Phase 1)

- Continue Optimization of HPD Cell Design and HPD Cell Fabrication
- Continue Evaluation of LSGM and ScSZ as 800 °C Operating Temperature Electrolytes
- Continue Performance Improvement of YSZ Electrolyte Cell at Lower (800 –900 °C) Temperatures
- Assemble and Test POC System in Fall 2004
- Incorporate POC System Lessons Learned and Cost Reduction Developments in Alpha System Scheduled at the end of Phase 1 (2006)

Acknowledgements

- DOE-NETL
- Don Collins, NETL
- Siemens Westinghouse SECA Team
- Fuel Cell Technologies LTD
- Blasch Precision Ceramics

