Status of the Acumentrics SOFC Program

Dr. Norman Bessette
SECA Annual Workshop
Boston, MA.
May 11, 2004

Acumentrics Corporation

- ~ 75 *Employees*
- Manufacturing since 1994
- •Based in Westwood, Mass.
- •~40,000 sq. ft facility
- Critical disciplines in-house
 Electrical Engineering
 Mechanical Engineering
 Chemical Engineering
 Thermal Modeling
 Ceramics Processing
 Manufacturing
 - Automation Finance

Sales & Marketing

Acumentrics

Battery based UPS

500Watts - 20kWatts

Uninterruptible Power Supplies for Harsh Environments

Rugged-UPS® Military

Features:

- Sealed electronics
- Able to withstand vibration
- Unity power factor input
- Wide input 80VAC 265VAC
- Isolated 120 / 240VAC output
- Hot swap battery case
- Parallelable to 20 kWatts

Acumentrics Corporation

Alliance Investments

Northeast Utilities

ChevronTexaco

Connecticut Innovations

NiSource

Sumitomo

General Dynamics

Morgan Stanley

ChevronTexaco

GENERAL DYNAMICS

Communication Systems

How Acumentrics Fuel Cells Work

Solid Oxide Fuel Cell

SOLID STATE (Ceramic) CONSTRUCTION

Acumentrics Fuel Cell Evolution

2000 - 2001

Electrolyte supported

Tubular SOFC Systems

A A D AND RES (

700 Watts

10 Watts

25 Watts

Q3 2000

Q1 2001

Acumentrics Fuel Cell Evolution

2002 - 2003

Anode supported

Tubular SOFC Systems

Stack Design Attributes

- Anode support tubes
- Brazed seals
- Stackable design
- Welded electric connections
- Low thermal mass
- Withstands heat expansion

Stackable Manifold design

5 Watt Tubes Q2 2002

High Power Anode Tubes

20 Watt Tubes Q3 2003

Acumentrics Tubular SOFC POX System Overview

Acumentrics Tubular SOFC Steam Reformed System Overview

Acumentrics 2kW UPS

Full on-line UPS

For Cable/Broadband

Operates on line pressure natural gas
Fuel internally reformed by partial oxidation
System Efficiency capable of mid 30% range

Acumentrics Fuel Cell Evolution

2002Anode supported

Tubular SOFC Systems

- 45 minute start-up
- Excellent cycle capability
- Excellent load following
- Low pressure gas feed
- Direct in-cell reforming

5,000 Watt

APU Core Module

Q4 - 2002

5kW Auxiliary Power Unit

5kW Stationary CHP Unit

SECA Program

Product Objectives

- Culminate in a 10kW modular stack capable of meeting a number of market requirements.
- Widen our fuel choices.
- Build upon our knowledge of "ruggedized" products for harsh environments.
- Allow for modular build up to the 100kW class size.
- Allow for integration with military towable power units in the 5-20kW size.

Cell Production

- Tasks:
 - Improve Anode Conductivity
 - Accelerate Tube Firing
 - Reduce Silver Content
- Accomplishments to date:
 - Bisque firing capable of reduction from 48 to 12 hours
 - Silver Content reduced by over 50%

Cell Production Process

Anode Tube Extrusion

Anode Tube Bisque Firing

Electrolyte Deposition

Cathode Coating Operation

Brazing Apparatus

Brazing Apparatus operating

Comparison of poorly brazed and well-brazed Joint

Low Cost Braze-Life Graph

Brazing

New Braze Materials have been validated reducing cost from over \$1400/kW to less than \$1/kW.

New Braze Cap manufacturing process has reduced cost from ~\$6/cell to ~\$0.50/cell

SECA Cell Testers

Two 7mm diameter cells on lifetest

Present 15mm History

Cell Power Trend

Cell Technology

- Phase I will continue our evolution from 5W –15W/tube to 25W/tube
- Phase II/III will further that work to 50W/tube
- The first 6 mo. of SECA funding has helped us advance 33% toward the first goal.

Acumentrics Generator Design

Anode supported

Tubular SOFC Systems

- Excellent start-up
- Excellent cycle capability
- Excellent load following
- No fuel pumps.
- Direct reformation

Generator Cost Reductions

- Early SECA work on manifolds has shown the potential for cost reduction from \$690/kW to \$80/kW with further advancement to <\$50/kW expected.
- Work on recuperators has shown a path to <\$25/kW – final designs are being validated.

Bended Tube Recuperator

Ceramic Recuperator

Control Electronics Evolution

- Programmable Logic Controllers, PLCs
 - Size 24" X 15", \$6000 per System

- Printed Circuit Board, PCB, Controller
 - Size 11" X 7.5", \$400 per System

System Pictures

• PLC System

Control PCB

Control System Wiring

- Discrete wiring harness
- 150 through bulkhead connections
- Centralized control board
- System wiring cost \$500
 - Limited opportunities for cost reduction
- The wiring costs more than the electronics!

Distributed vs. Centralized Control

- Several small intelligent I/O boards.
- CAN bus communication.
- Eliminates substantial wiring and cost.
- Modular, incremental and applicable to a wide variety of systems.
- Redundancy and fault tolerance is easier and more cost effective to achieve.

Fuel Cell Interface Converter, FC-IC

- Interfaces fuel cell to energy storage system
- Controls fuel cell output current
- Utilizes efficient automotive MOSFETs
- Interleaved buck boost topology
- 6kW building block
- 30 90 V input, 30 60V output, 200 amps

SECA Power Conversion Tasks

 Complete design, fabrication and test of a 98% efficient 48VDC power electronics front end.

Low Voltage Inverter Development

- The FC-IC topology can be configured into an inverter.
- An interleaved topology and high frequency MOSFETs greatly reduce output filter requirements and cost.
- Preliminary efficiency measurements are in the 96-97% range.

FC-IC Based Inverter Development Platform

SECA Inverter Efficiency

Power System Projections

- Cost will be \$100-\$150/kW with the appropriate volumes.
- Efficiency will be 92-95%
- Device efficiency and packaging advances in the automotive industry will drive the cost towards the \$50/kW goal.

Conclusions

- Been in the fuel cell business for 4 years.
- Completed over 1 year operation on previous generation cell technology.
- We have shipped 14 alpha & Beta units for field testing.
- Demonstrated the ability to operate complete systems on lie-pressure natural gas and commercial propane.
- Developed a scalable low-cost manufacturing process.
- Enhanced cell power by 15x in 3 years & are proceeding toward an additional 2-3x
- Developed the hardware & firmware for a low cost controller.
- Prototyped a low cost, high efficiency inverter capable of achieving SECA cost & efficiency targets.

Acknowledgement

Department of Energy-National Energy Technology Laboratory

Don Collins, Project Manager

