

CAN WE RELIABLY AND SAFELY STORE LARGE AMOUNTS OF CO2 UNDERGOUND AS A CLIMATE CHANGE STRATEGY?

Presented by:

Vello A. Kuuskraa

Vkuuskraa@adv-res.com

President

Advanced Resources International, Inc.

Presented to:

Fourth Annual SECA Meeting Seattle, WA

April 2003

A PORTFOLIO OF CLIMATE CHANGE STRATEGIES

1. UNDERGROUND STORAGE OF CO2 IS ONE ASPECT OF A CLIMATE CHANGE STRATEGY

WHY CONSIDER UNDERGROUND STORAGE OF CO2?

2. UNDERGROUND STORAGE OF CO2
OFFERS LARGE POTENTIAL BENEFITS

Lower Costs

Relatively Near-Term Strategy

Large Potential

Balances
Energy
Security
and
Economic
Growth

HOW LARGE AND CENTRAL WILL BE ITS ROLE?

To determine the role of CO2 capture and storage as a climate change strategy, we need to address four questions.

- 1. Will the costs of CO2 capture and storage be affordable and competitive with other climate change mitigation options?
- 2. Is there sufficient capacity to store large amounts of CO2 underground?
- 3. How strong is our experience with safely transporting and storing large volumes of CO2 underground?
- 4. What must be done to assure that underground storage of CO2 is reliable and safe, sufficient to gain public acceptance?

Figure 1. OBJECTIVES AND PARTICIPANTS OF THE CCP

CO₂ Capture Project

- Achieve major cost reductions in CO₂ Capture and Storage:
 - > 50% reduction for retrofit applications.
 - 75% reduction for new builds.
- Demonstrate to external stakeholders that CO₂ storage is safe, measureable, and verifiable.

Table 1. HIGH CONCENTRATION SOURCES OF CO₂ EMISSIONS*

	Estimated Annual U.S. Emissions (2000)		
Industrial Source	(Million t C)	(Million t CO2)	
Oxygen-blown Gasification	15	55	
Cement Manufacturing	11	40	
Natural Gas Processing	5	19	
Ammonia Production	4	15	
Hydrogen Units at Refineries	4	15	
Ethanol/Power Production	1	4	
TOTAL	40	148	

^{*}Oxygen-blown gasification units allocated by industry. Source: Internal working papers.

Table 2. CO₂-EOR PROJECTS SEQUESTERING ANTHROPOGENIC CO₂

State/		CO_2	Supply	EOR Fields	Operator
Province	Plant Type	MMcfd	Million t/Yr		
SASKATCHEWAN	Coal Gasification	95	1.8	Weyburn	PanCanadian
OKLAHOMA	Fertilizer	35	0.7	N.E. Purdy, Bradley Unit, Sho-Vel-Tum	Anadarko, Chaparrel Energy
COLORADO	Gas Processing	60	1.2	Rangely	ChevronTexaco
TEXAS	Gas Processing	70	1.3	Sharon Ridge, Others	ExxonMobil
WYOMING	Gas Processing	30	0.6	Lost Solider, Wertz	Merit Energy
ALBERTA	Ethylene Plant	4	0.1	Joffre Viking	PanWest Petroleum
TOTAL		294	5.7		

Source: Advanced Resources International, 2003

Figure 2. CO₂ FACILITIES AND EOR FIELD SITES, WYOMING

Source: Carbon Dioxide in Wyoming, WY State Geological Survey, Info Pamphlet 9, 2001

INCENTIVES FOR CO2 STORAGE AND DOMESTIC ENERGY PRODUCTION

Market-based incentives would be structured to encourage industry to capture high CO2 concentration emissions for enhanced oil, natural gas and coalbed methane recovery:

- Low-cost capture of CO2 emissions
- Production of additional domestic energy
 - 1 million barrels per day of oil production
 - Substantial potential for additional natural gas reserves
- A \$50/tonne carbon (\$13 to 14/tonne CO2) sequestration credit would be revenue neutral.

Table 3. CO₂ STORAGE CAPACITIES OF U.S. GEOLOGIC FORMATIONS

	Estimated CO ₂ Storage Capacity (Million Metric Tons)	
	CO ₂	Carbon
Unmineable Coal Beds (Lower 48)	50,000	15,000
Depleting Oil Reservoirs	50,000	15,000
Depleting Gas Reservoirs	100,000	30,000
Saline Aquifers	Large	Large
Other	TBD	TBD

Source: Advanced Resources International, 2002

Figure 3. POTENTIAL CO2 STORAGE OPTIONS IN WESTERN NEW YORK AND NORTHERN PENNSYLVANIA

SALINE AQUIFERS

1. Rose Run (shown on map)

- Area bounded by depth, structure and gross sand isopach
- Holds 2 to 7 Gt CO2
- 2. Potsdam (not shown)

OIL FIELDS

Bradford Other

GAS FIELDS

Lake Shore (Clinton-Medina)

CONVERTING CURRENT EOR PRACTICES TO CO₂ STORAGE

- 1. Assess and configure reservoir for long-term (~1,000 year) storage of CO₂.
- 2. Maintain CO₂ in reservoir (at pressure) rather than "blow down" reservoir and reuse the CO₂.
- 3. Install long-term monitoring, verification and safety systems.

Figure 4. STATUS OF CO₂-EOR IN THE U.S.

JAF02207.PPT

Figure 5. PERMIAN BASIN CO2-EOR PROJECTS

Source: Shell CO₂ Company

Figure 6. CO₂ –EOR PRODUCTION IN THE U.S.

Figure 7. LOCATION OF ECBM PILOTS, SAN JUAN BASIN, USA

Figure 8. CROSS-SECTIONAL VIEW OF THE ALLISON UNIT CO₂-ECBM PILOT, SAN JUAN BASIN

ACHIEVEING SAFE AND RELIABLE UNDERGROUND STORAGE

The greatest challenge facing carbon capture and storage as a climate change strategy will be gaining public acceptance, shaped by the public's perception of its safety and reliability:

- Understanding of long-term transport of CO2 and its interaction with underground reservoirs
- Compelling, scientific case as to its safety
- Appropriate regulatory framework

Figure 9. OVERCOMING HURDLES TO USING CARBON CAPTURE AND STORAGE AS A CLIMATE CHANGE STRATEGY

PATH FORWARD FOR CO2 STORAGE

Building the base of scientific knowledge and public acceptance for CO2 capture and storage could follow this "path forward":

- 1. Learning from nature and its CO2 storage analogs
- 2. Targeting enhanced oil and gas recovery with high concentration CO2 vents
- 3. Encouraging zero CO2 emission hydrogen production
- 4. Partnering with international efforts
 - Sleipner/SACS
 - Weyburn
 - RECOPOL

Figure 10. NATURAL CO2 FIELDS AS ANALOGS FOR GEOLOGIC SEQUESTRATION

McELMO DOME

- Charged with CO2 millions of years ago; holds nearly 2 Gt of CO2.
- CO2 reservoir capped by 1,500 feet of impervious salt and another 5,000 feet of shale and sandstone.
- Oil and gas explorations wells show the overlying strata to be CO2 free (with one exception).
- Overlying salt is selfhealing for faults and seismic activity.
- Two decades of safe CO2 production and transportation.

SUMMARY

- Acceptability of underground storage of CO2 will rest on a scientific and public balancing of risks.
- The prevailing scientific and industrial view is that underground storage of CO2 has a low risk of causing significant harm, assuming:
 - Suitable reservoirs are selected
 - Proper procedures are followed
- The compelling case for its safety and reliability still needs to be made to gain public acceptance:
 - Sound, transparent research
 - Straight-forward communication

Office Locations
Washington, DC
4501 Fairfax Drive, Suite 910
Arlington, VA 22203
Phone: (703) 528-8420
Fax: (703) 528-0439

Houston, Texas 9801 Westheimer, Suite 805 Houston, TX 77042 Phone: (713) 780-0815 Fax: (713) 780-3819

Denver, Colorado 1401 Seventeen St., Suite 400 Denver, CO 80202 Phone: (303) 295-2722 Fax: (303) 295-2833