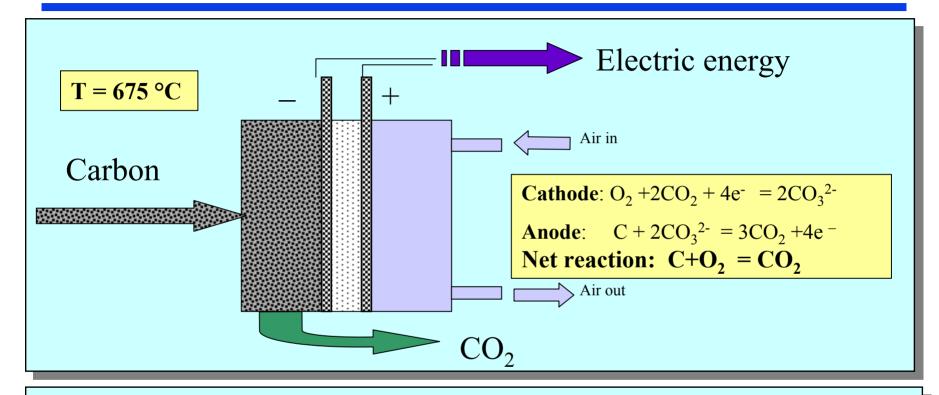
DIRECT CARBON (COAL) CONVERSION BATTERIES AND FUEL CELLS

Fourth Annual SECA Meeting April 15-16, 2003 Seattle WA by

John F. Cooper and Roger Krueger

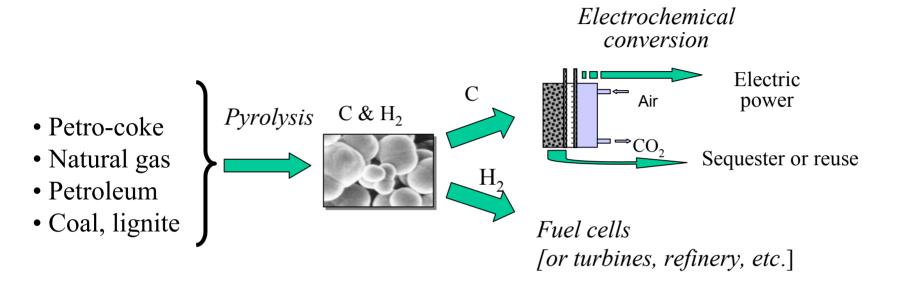
Chemistry and Materials Science Directorate
Lawrence Livermore National Laboratory Livermore CA 94550
Tel. 925-423-6649 Fax 925-422-0049 email Cooper3@LLNL.gov



Topics

- Concept
- Thermodynamic and Chemical Basis
- Technical Approach and Results
- The Synthesis of Carbon Electrochemical Fuels
- Conclusions

Direct Carbon Conversion Fuel Cell and Battery: Electricity From C/O2 Electrochemical Reaction



- High fuel cell efficiency: 80% of ΔH°_{298} (HHV), $\Delta H^{\circ}_{298} = 32.8$ MJ/kg-C [9.1 kWh/kg-C], $\Delta S \sim 0$, fixed C and CO₂ activities
- High specific energy battery: 3-4 kWh/kg (~3.5 kWh/liter) at 100-133 W/kg
- Fixed C, CO₂ activities make possible invariant EMF and full fuel utilization
- Boulouard corrosion is expected only at low polarization: $C + CO_2 = 2CO$

Routes to Power Production at Efficiencies > 70%

• The pyrolysis of $CH_x => C + (x/2)H_2$ consumes 3-8% of fuel value; no ash

70 - 80 % efficiency, HHV

H₂ co-product has multiple uses: fuel cells, chemical value, combustion

The Carbon Air Technology Evolved from LLNL Internal Research

Area	Contribution	Sponsor/Year
Nano- structures	Defined approach relating structure to rate; first full-cell experiments <u>ever</u>	CEES 1999
Particle anodes	Particles + melt mimic rigid electrode Experimental slurries in full cells	CEES 1999 LDRD, IL-10479
Anode R&D: rates and structure	Structure, conductivity effects studied; Carbon anode mechanism proposed; Data base of diverse fuels from slurry cells in full-cell configuration	LDRD, FY00-02
Angled cell	Developed cell enabling scale up, refueling, controlled wetting of carbon	LDRD FY01-02 IL-10848 LDRD FY01-02 Cathode lead Cathode lead Cathode lead Cathode codlector Ar fill Cathode codlector
Rigid anode JFC:Jun-03	Allows stacking and refueling of small assemblies; discovery of low-T materials; DOE NA22, ARL, ARO	FY2002-3 IL-11101

Comparison of Fuels for Fuel Cells

Fuel	Theoretical limit = ΔG(⁰ T)/ΔH ⁰ _{std}	Utilization efficiency, µ	$V(i)/V(i=0) = \varepsilon_{v}$	Actual efficiency = $(\Delta G/\Delta H_{std}^0)(\mu)(\epsilon_v)$
С	1.003	1.0	0.80	0.80
CH ₄	0.895	0.80	0.80	0.57
H_2	0.70	0.80	0.80	0.45

Efficiency of a fuel cell

(electrical energy out) / (HHV thermal value of fuels in)

 $[\Delta G(T)/\Delta H^{\circ}][\mu][V/V^{\circ}] = [theoretical eff][utilization][voltage efficiency]$

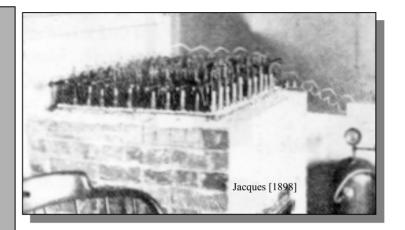
--where $\Delta G(T) \equiv - nFV^{\circ} \equiv \Delta H - T\Delta S$

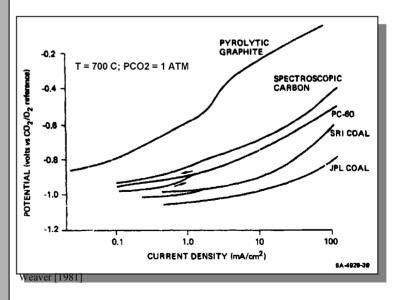
Fundamental advantages derive from thermodynamics of the C/O₂ reaction and fixed activities of the reactants

Technical background

Past efforts limited by ash entrainment, electrode fabrication and logistics

History

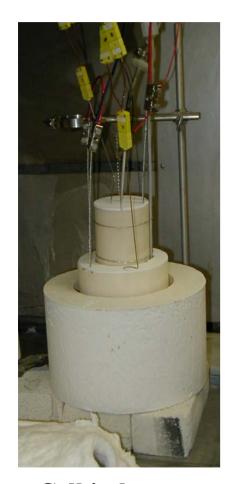

- Jacques [1898]: 15 kW coal batteries
 - $C + 2KOH + O_2 = K_2CO_3 + H_2O$
- ~10² papers in 20th century
 - Efficiency not driver, CO₂ not pollution
- Weaver [1980]: found reactive cokes
 - >98% utilization at 750 C
 - Power levels => 0.8 kW/m^2 @ 1 kA/m^2
- Vutetakis [1985]
 - Fundamental studies of ground C slurries
 - Suggested nano-scale disorder might enhance rate

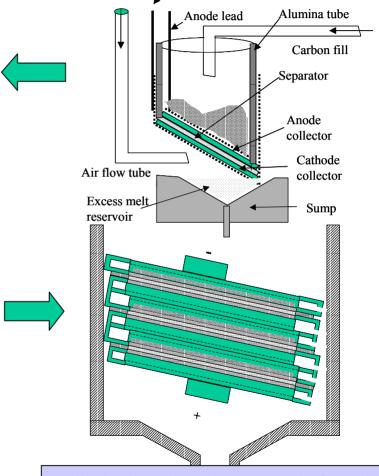

Barriers to "electricity direct from coal"

- Ash entrained into melt
- Electrode fabrication, distribution costs
- Resistance of rigid electrode, high polarization

Relation to Molten Carbonate Fuel Cell

- Similar cathode, melt
- No H₂ or steam corrosion
- More tolerant of S (no anode catalyst)

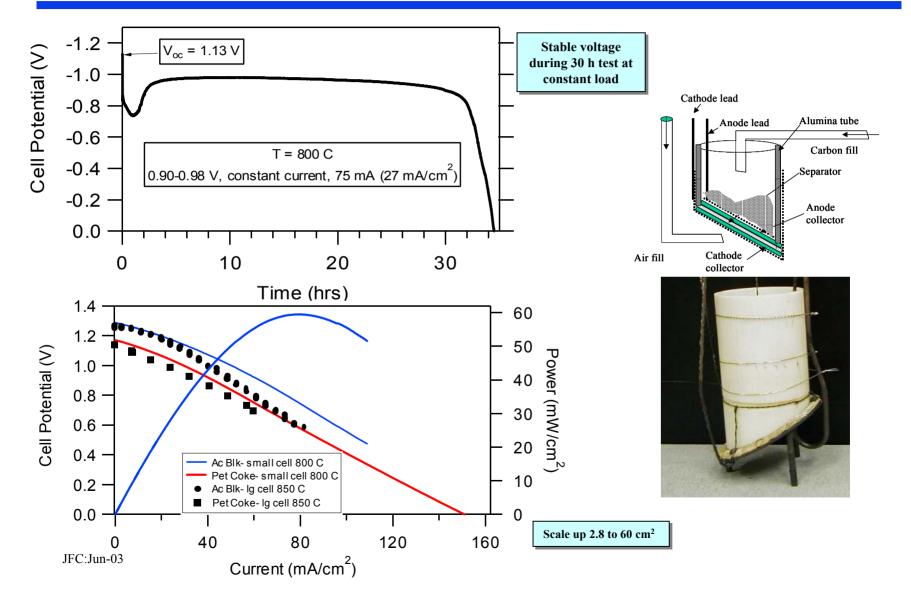

At Temperatures of 400-1100 °C, the Only Reaction is $C + O_2 \rightarrow CO_2$



Conditions	Method used	Results	Reference
T = 700 C, graphite, carbonate	Δ W, dV/dt ~ I/nF	n = 4 u not reported	Tamaru & Kamada [1937]
$T = 400-900 \text{ C},$ graphite, CO_3^{2-}	dV/dt; [CO]/[CO ₂]	$ \begin{vmatrix} n = 4 \\ u \sim 1.0 \end{aligned} $	Hauser [1964]
T = 700-800 C, rigid reactive carbons and coke	dV/dt; ΔW	$n = 4$ $u \sim 1.0$	Weaver [1977-9]
$T = 700 \text{ C, } CO_3^{2-}$ Large volume, free slurry	$d[CO_2]/dt = I/nF$	n = 4 u poor	Vutetakis [1984]
T = 900-1100 C, $NaAlF_4 + Al_2O_3,$ turbo & graphite	$d[CO_2]/dt = I/nF$ anode $CO \sim 0$: no Boudouard rxn	$n = 4$ $u \sim 1.0$	Thonstad [1970]

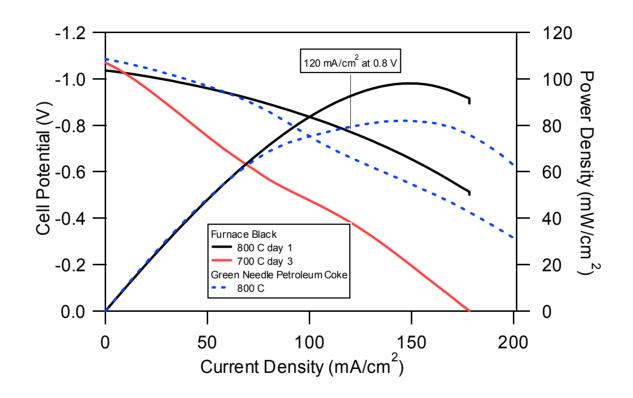
Studies with 60 cm² Angled Cell Anticipate Fuel Cell

Cathode lead

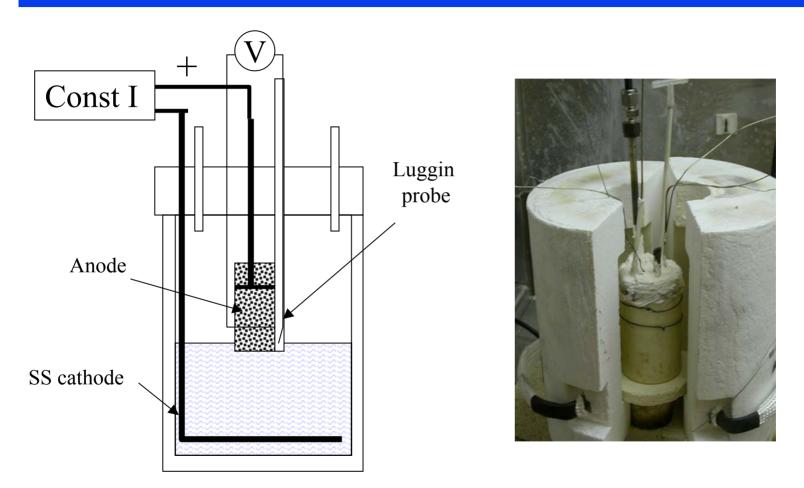

Cell in heater

60 cm² angled cell

- Tilted orientation allows control of wetting
- Fuel cell option for exchange of electrolyte
- Basis of patent-pending

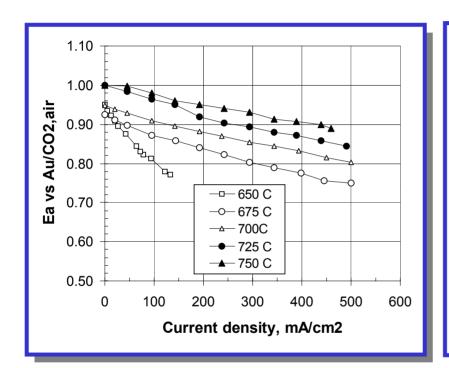

Voltage Stability, 80% Efficiency and Successful Scale-up of Powder-fed Fuel Cell

Demonstrated >100 mA/cm² at 80% Efficiency With Carbon Black Fuels



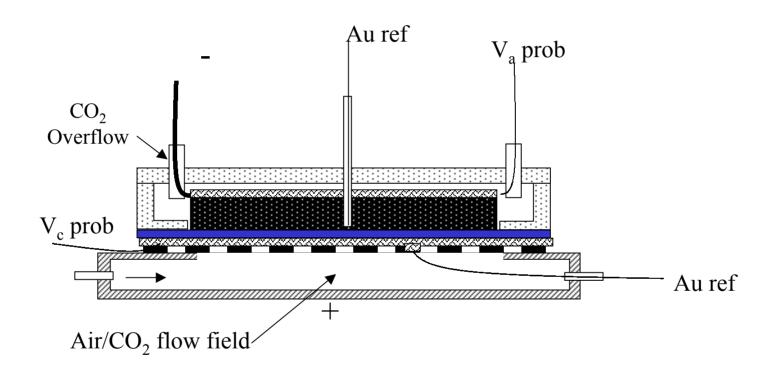
• Performance sustained until fuel consumed (> 3 days)

Data: N.Cherepy


New Rigid Block Materials: Half-Cell Research

Measures anode polarization against Au/0.28CO₂, 0.14O₂

Enhanced Performance with Composite Plates at 650-700 °C

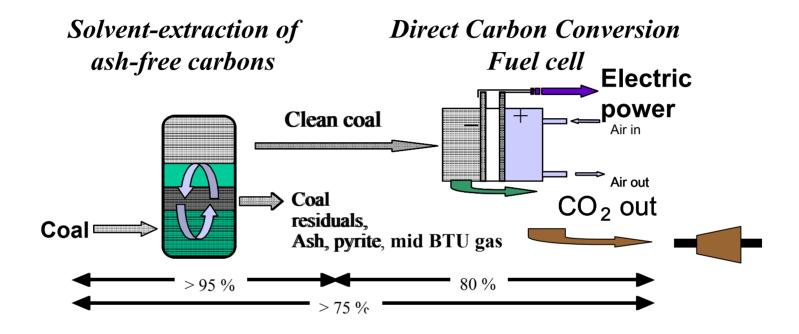


- Properties of composites Density: >25 % theoretical Conductivity > 25 Ω^{-1} cm⁻¹
- With separator, cathode at 700 °C:
 - 1 kW/m² @ 80% efficiency
 - $-4.5 \text{ kW/m}^2 \text{ peak power}$
- Ongoing tests on 50 cm²

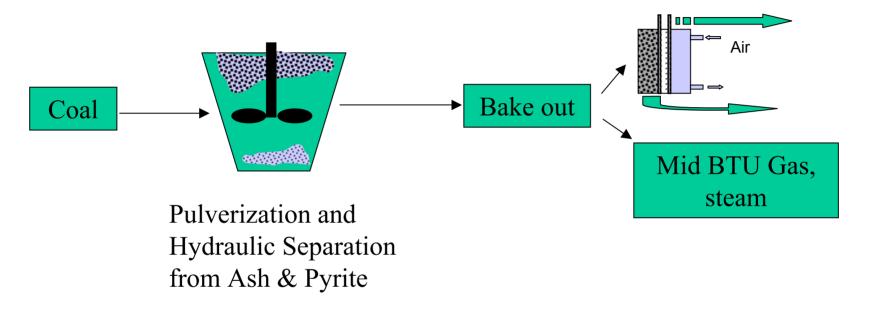
Recently studied class of high-density C composite plates yielded twice previously achieved power at 100 °C lower T. Expected 80% efficiency at 50-500 mA/cm²

Experimental Approach: Rigid Plate Anode with Flow Field and Improved Diagnostics

- Independent reference electrodes and voltage probes
- Precise control over gas composition and flow
- Isolation of reaction zone in rigid carbon block

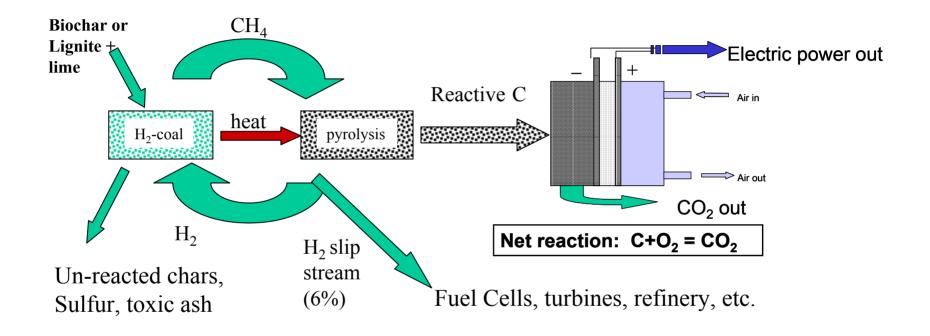

DOE/NETL Project, FY 2003

The synthesis of carbon electrochemical fuels


Extraction and Use of Carbon from Coal

- Solvent extraction yields coal with 0.01% ash
 - Recycles benign solvents, negligible loss (0.7 %) per cycle
 - Unconverted coal retains thermal value

Hydraulic Cleaning of Coal



- Hydraulic separation of C (<1 % S, ash) from pyrite, ash
 - 65 kWh/ton (98 % retention of heating value)
 - Net coal-to-electricity efficiency 78 %
- Total cost $60/\tan > 0.8$ ¢/kWh for fuel
- But: high ash requires further cleaning or periodic electrolyte exchange

Clean Carbon Fuels from Hydropyrolysis

Extraction of Carbon from Coal Seam by in situ methanation?

How Often Must Electrolyte Be Replaced?

Interval between electrolyte replacement/recycle

- 0.5% ash—hydraulic cleaned coal 200 days (twice yearly)
- 0.05% ash—solvent extracted coal 5.5 years (life of cell)
- 0.01% ash—pyrolyzed oil N/A

For 0.5% ash cleaned coal

- For common fuels under consideration, cost of electrolyte exchange is insignificant
 - Lowest recycle cost if Na/K eutectic is used: \$2.5/kW per exchange, assuming 20 ¢/lb salt 200 days between exchange => 0.05 ¢/kWh

Summary: Efficient Processes for Cleaning Coal

- UK: hydraulic separation
 - grind to 30 μm; baking to remove mid-BTU gas; low-ash product
- UK-process: extraction of pitch with anthracene oil
 - 425 °C, 200 atm; no hydrogenation; 40-70% yield; 0.05-0.1 % ash
- WVU-process: extraction of pitch with n-methyl pyrrolidone
 - Ambient pressure, 200 ° C; 40-50% yield; 0.05-0.1 % ash

Process	Efficiency	Yield	%Ash	% S	Cost
UK-hydro	98%	100%	0.5-1	1-2	\$60/ton, \$3/GJ
					0.8 ¢-fuel/kWh
UK-solvent	> 90%	40-70%	0.05	0.5	\$200/ton,
					2.4 ¢-fuel/kWh
WVU-solvent	> 90%	40-50%	0.05	0.5-1	\$78-140/ton,
					1-2 ¢-fuel/kWh

Initial Hardware Cost Estimates

Stack cost $\sim $250/\text{m}^2$ at 2 kW/m^2

Component or factor	Basis	Cost \$/kW
Zirconia fabric	Zircar, Inc. retail price \$200/m²	100
Nickel felt	Eltech, Inc. \$20/m ² retail price	10
Stainless steel lid	Ni plated SS frame, \$5/lb	38
Graphite base, collector	\$1.00/lb design	10
Assembly	20% parts	32
G&A, profit	20% parts and labor	48
Total		\$237

Acknowledgments

LLNL Collaborators

- J. F. Cooper, Chemistry, Electrochemical Engineering
- Nerine Cherepy, Chemistry
- Larry Hrubesh, Physics
- Ton Tillotson (advanced composite materials)
- Roger Krueger, Sr. Techn. Associate

Consultants and advisors

- Prof. Rob Selman IIT (Molten Carbonate Fuel Cell)
- Dr. Kim Kinoshita (LBL, ret.; Carbon properties)
- Meyer Steinberg (BNL) fossil fuel to carbon processing
- MesoSystems Technology (Kennewick WA). Thermal engineering
- LDRD and CEES; DOE NA-22; ARL; ARO; DOE/NETL