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Direct Carbon Conversion Fuel Cell and Battery:
Electricity From C/O2 Electrochemical Reaction
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*  High fuel cell efficiency: 80% of AH®,,; (HHYV),
AH®, = 32.8 MJ/kg-C [9.1 kWh/kg-C], AS ~ 0, fixed C and CO, activities
*  High specific energy battery: 3-4 kWh/kg (~3.5 kWh/liter) at 100-133 W/kg

«  Fixed C, CO, activities make possible invariant EMF and full fuel utilization

Boudouard corrosion is expected only at low polarization: C + CO, =2CO




Routes to Power Production at Efficiencies > 70%

Electrochemical
conversion

» Petro-coke

Pyrolysis € & H,
. % i ’ — =>CO

* Natural gas -—> Sequester or reuse
» Petroleum |
* Coal, lignite ) Fuel cells

[or turbines, refinery, etc.]

70 — 80 % efficiency, HHV
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The Carbon Air Technology Evolved from
LILNL Internal Research

Area Contribution Sponsor/Year

Nano- Defined approach relating structure to | CEES 1999
structures | rate; first full-cell experiments ever

Particle Particles + melt mimic rigid electrode | CEES 1999 /
LDRD, IL-10479 ©

anodes Experimental slurries in full cells

Anode Structure, conductivity effects studied; | LDRD, FY00-02
R&D: Carbon anode mechanism proposed; N~
rates and | Data base of diverse fuels from slurry i
structure | cells in full-cell configuration

Angled Developed cell enabling scale up, LDRD FY01-02
cell refueling, controlled wetting of carbon | IL-10848

Rigid Allows stacking and refueling of small | FY2002-3
anode assemblies; discovery of low-T

JFC:lun-03 materials; DOE NA22, ARL, ARO IL-11101




Comparison of Fuels for Fuel Cells E

Fuel | Theoretical limit=| Utilization V(@#)/V(i=0) | Actual efficiency =
AG({T)/AR®,, efficiency, M =€, (AG/AHOstd)(p‘)( £)
C 1.003 1.0 0.80 0.80
CH, 0.895 0.80 0.80 0.57
H, 0.70 0.80 0.80 0.45

Efficiency of a fuel cell

(electrical energy out) / (HHV thermal value of fuels in)

[AG(T)/AH®][U][V/V°]= [theoretical eff][utilization][voltage efficiency]
--where AG(T) =-nFV° = AH-TAS

Fundamental advantages derive
from thermodynamics of the C/O, reaction and fixed

activities of the reactants
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e Past efforts limited by ash entrainment,
electrode fabrication and logistics

background

=

History
« Jacques [1898]: 15 kW coal batteries
— C+2KOH + 0, = K,CO, + H,0
« ~102 papers in 20t century
— Efficiency not driver, CO, not pollution
 Weaver [1980]: found reactive cokes
— >98% utilization at 750 C
— Power levels => 0.8 kW/m? @ 1 kA/m2

« Vutetakis [1985]

— Fundamental studies of ground C slurries
— Suggested nano-scale disorder might
enhance rate

Barriers to “electricity direct from coal”

 Ash entrained into melt

* Electrode fabrication, distribution costs

* Resistance of rigid electrode,high
polarization

Relation to Molten Carbonate Fuel Cell

« Similar cathode, melt

* No H, or steam corrosion

* More tolerant of S (no anode catalyst)
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At Temperatures of 400-1100 °C, the Only Reaction

Conditions Method used Results Reference
T =700 C, AW, dV/dt~ImnF |n=4 Tamaru &
graphite, u not reported | Kamada
carbonate [1937]

T =400-900 C, dVv/dt; [CO)/[CO,] |n=4 Hauser
graphite, CO,* u~1.0 [1964]

T =700-800 C, dV/dt; AW n=4 Weaver
rigid reactive u~1.0 [1977-9]
carbons and coke

T =700 C, CO,* | d[CO,]/dt=I/nF n=4 Vutetakis
Large volume, u poor [1984]
free slurry

T =900-1100 C, |d[CO,]/dt=1/nF n=4 Thonstad
NaAlF, + A12Q3, anode CO~0:no |u~1.0 [1970]
turbo & graphite | Boudouard rxn
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Studies with 60 cm? Angled Cell Anticipate Fuel Cell@

Cell in heater
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60 cm? angled cell

Cathode lead
¥
I Anode lead /Alumina tube
P —
Carbon fill

Separator

Anode
collector

Cathode
Air flow tube collector

Excess mel
. <«— Sump
reservoir
[ 7

» Tilted orientation allows control of wetting
* Fuel cell option for exchange of electrolyte
* Basis of patent-pending




Voltage Stability, 80% Efficiency and Successful
Scale-up of Powder-fed Fuel Cell
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Demonstrated >100 mA/cm? at 80%
Efficiency With Carbon Black Fuels
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* Performance sustained until fuel consumed (> 3 days)

Data: N.Cherepy
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New Rigid Block Materials: Half-Cell Research |
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Luggin
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Measures anode polarization against Au/0.28CO,, 0.140,
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Enhanced Performance with Composite Plates
at 650-700 °C

* Properties of composites
Density: >25 % theoretical
Conductivity > 25 Q-lcm!

« With separator, cathode at

700 °C:
— 1 kW/m? @ 80%
efficiency
— 4.5 kW/m? peak power

« Ongoing tests on 50 cm?

Ea vs Au/CO2,air

0 100 200 300 400 500 600

Current density, mA/cm2
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Experimental Approach: Rigid Plate Anode with E’
Flow Field and Improved Diagnostics =

) Au ref V. prob

CoO,
Overflow ~h 1

Wl 7 Au ref

Air/CO, flow field

« Independent refi lectrod d volt b 1
ndependent reference electrodes and voltage probes DOE /NETL PI-OJ GCt,

*  Precise control over gas composition and flow
» Isolation of reaction zone in rigid carbon block FY 2003
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The synthesis of carbon
electrochemical fuels
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Extraction and Use of Carbon from Coal £

Solvent-extraction of Direct Carbon Conversion
ash-free carbons Fuel cell :
g El€CLIIC
—————————— ower
Clean coal =-<=-pAir o
""""""""""""""" — Air out
residuals, C02 out
Ash, pyrite, mid BTU gas il *
>« 80 % >
>75 % >

TFC:un-03 A. Stiller, J. Zondlo, WVU; B. K. Parekh, U. Kentucky



Hydraulic Cleaning of Coal

Pulverization and
Hydraulic Separation
from Ash & Pyrite

« Hydraulic separation of C (<1 % S, ash) from pyrite, ash
— 65 kWh/ton (98 % retention of heating value)
— Net coal-to-electricity efficiency 78 %

« Total cost $60/ton => 0.8 ¢/kWh for fuel
» But: high ash requires further cleaning or periodic electrolyte exchange

JFC:Jun-03 Ref.: B. K. Parekh, U. Kentucky



Clean Carbon Fuels from Hydropyrolysis

Biochar or
Lignite ¢ a mmmP>F |ectric power out
lime
Reactive C <= Airin
.'--.'--.'-,-.'-,-.'-,-.'-,-.'-,-.'-,-.'--.'-- h .'--.'--.'-,-.'-,-.'-,-.'-,-.'-,-.'-,-.'-,-.'--.'-- By
" ‘ H ~coal "_ eat pyroly51s ’-." Ty e L
1 =—>Airout
CO, out
H ) <. -
2 H, slip Net reaction: C+0,=CO,
Un-reacted chars, stream
Sulfur. toxic ash (6%) Fuel Cells, turbines, refinery, etc.
9

Extraction of Carbon from Coal Seam by in situ methanation ?
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How Often Must Electrolyte Be m
Replaced?

Interval between electrolyte replacement/recycle
— 0.5% ash— hydraulic cleaned coal 200 days (twice yearly)
— 0.05% ash—solvent extracted coal 5.5 years (life of cell)
— 0.01% ash—pyrolyzed oil N/A
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Summary: Efficient Processes for
Cleaning Coal

e UK: hydraulic separation
— grind to 30 pm; baking to remove mid-BTU gas; low-ash product

« UK-process: extraction of pitch with anthracene oil
— 425 °C, 200 atm; no hydrogenation; 40-70% yield; 0.05-0.1 % ash
 WVU-process: extraction of pitch with n-methyl pyrrolidone
— Ambient pressure, 200 ° C; 40-50% yield; 0.05-0.1 % ash

UK-hydro 98% 100% 0.5-1 1-2 $60/ton, $3/GJ
0.8 ¢-fuel/kWh

UK-solvent >90% | 40-70% |  0.05 0.5 $200/ton,
2.4 ¢-fuel/kWh

WVU-solvent | >90% | 40-50% | 0.05 | 0.5-1 $78-140/ton,
1-2 ¢-fuel/kWh
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Initial Hardware Cost Estimates

Stack cost ~ $250/m? at 2 kW/m?

Component or factor | Basis Cost $/kW

Zirconia fabric Zircar, Inc. retail 100
price $200/m?

Nickel felt Eltech, Inc. $20/m° 10
retail price

Stainless steel lid Ni plated SS frame, 38
$5/1b

Graphite base, collector | $1.00/Ib design 10

Assembly 20% parts 32

G&A, profit 20% parts and labor 48

Total $237
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