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Goal: Facilitate the Exploitation of
ODS Alloys

Barriers:

» Joining

* Highly-directional properties: for tubes, transverse strength << axial
* Unusual mechanical behavior; strain-rate sensitivity/mode of failure
* Cost

Options:

* Unconventional joining approaches

* Innovative processing to obtain the desired microstructure

 Improved quantification of alloy properties and characteristics so that there are no
surprises

Scientific approach:
* Understand and quantify all available routes for joining
* Develop mechanistic understanding for understanding how to control the alloy

microstructure; and of the oxidation behavior
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Why ODS Alloys?

* Creep strength to temperatures > conventional high-temperature alloys
- Potential for use to temperatures where typically ceramics are considered

» Excellent oxidation resistance

* Resistance to sulfidation; steam oxidation

» Current Focus: ODS-FeCrAl alloys

Related work:
» Special Metals Inc: ODS tubing
* European COST programs
* SBIR at MER Corp.
* ARM programs:
—Foster Wheeler
-UCSD
—U. Liverpool
* ORNL: ‘nano-clusters’
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Alloys of Interest

Alloy Composition, weight percent Remarks
Fe | Cr | Al |other RE

ODS-Fe Al Bal | 2.2 {159 | Ti,Si | Y,0,-Al,0, | ORNL development
MA956 Bal | 20 | 45 | Ti | Y,05-Al,04 | Special Metals Inc.
MA956H Bal |21.6| 5.7 | Ti,Si | Y,05-Al,05 | 956 modification
PM2000 Bal| 20 | 55 | Ti | Y,0,-Al,0; | Plansee
ODM751 Bal [16.5] 45 | Ti | Y,05-Al,0; | Dour Metal
Kanthal APM | Bal | 20 | 5.5 | Ti,Si | ZrO,-Al, O, | oxidation comparator
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Presentation Content

* Joining
* Temperature limits

—fireside/steam-side compatibility

» Mechanical properties
—transverse (hoop) strength

* ODS-specific issues

— strain-sensitivity/mode of failure
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Joining of ODS Alloys

*Joining must avoid
— redistributing the Y,0, dispersed phase

— changing the grain structure size/shape/orientation

*Challenges:
— fusion processes: probably a last resort
~brazing in COST-522 program
— friction/inertia welding: distortion of microstructure

— diffusion bonding
~ TLP: successfully demonstrated on other ODS
» plasma-assisted diffusion bonding: MER Corp
— others:
- explosive bonding: successfully demonstrated (COST-501)

» pulsed magnetic welding

~ mechanical--threading + brazing
OAK RIDGE NATIONAL LABORATORY
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Tested Configurations for ODS Joints

Header

Header
<— AIRIN
AIR OUT
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‘Safe’ end — Conventional weld
S : Ceramic
ODS tube Explosive bond _ tube
Joints
\ +<—ODS tube
ﬂ ODS Corner
British Gas ‘Harp’ Joint block \,  Bayonet tubes (COST-522)
ODS TLP
tubes bond

TLP joint: HiPPS program




Other Possible Configurations
for ODS Joints
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Threaded & brazed Overlapped and _
brazed Inertial welded

Reinforced joints tube-to-flange joint



Inertia welding of MA-956 tubes

T e T |

B. Kad/Interface Welding

*63.5 mm diam. x 7 mm wall thickness, unrecrystallized room temperature bend testing
MA-956 tube of inertia welded MA956 tubes

* mechanically robust joints have be produced in using
inertia welding

* process window was determined based on the integrity of
the joint in bend tests in coupons cut from joined tubes - UBLLL | T :
| J I| | | |

| | |
* reproducibility of joining parameters is excellent = ‘5 |




Very sharp demarcation of deformed
microstructure after inertia welding
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JOINT

o

Tube-outer surface

B. Kad. 2003
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Plasma-Assisted Diffusion Bondin

Bond line
MER Corp-SBIR-II

‘clean’ joint

thin joined zone
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continuity

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY UT-BATTELLE

11




Bond-line exhibits Ti-rich precipitates
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« EPMA suggests an accumulation of Ti,
Al, Y, and O along the bond line

* predominantly Ti
¢ « alloy contains approx. 0.5 %Ti
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TEM 1indicates discrete particles

Image Karren More (853)
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Particles are TiC and Al,O,
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AL, 0, particles at boundary

TiC particles at boundary

Image Karren More
(858 + maps 859...)




TLP Joining: Collaborative Effort

SREREVHR

Extent of
interdiffusion

Bond line

EERC-N.A. Bornstein-ORNL

*TLP approach based on
concepts demonstrated for
hE HiPPS joints

*special considerations for
application to an alumina
scale-forming alloy

4 ¢ |
Lkt blrm wod

J. Hurley/N.A. Bornstei
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Temperature Limits

The basis for modeling the oxidation-limited lifetimes of these alloys is
relatively straightforward, since:

* they form essentially Al,O, scales that are uniform in thickness
» there is negligible internal attack (life can't be equated to section thinning)
* the Al concentration gradient in the alloy is flat until very near the end of life

As a result, it is possible simply to equate the oxidation lifetime to the rate of
consumption of the available Al to form the alumina scale:

Life = Al available for oxidation/oxidation rate
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The oxidation kinetics of these
alloys have a characteristic form
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Current Model

The current expression of the model is:

t, = {[S*10-4*p ,*A _*eQ/1.987*D]2/(3600* A, *e QY1987 D)L +
{[1/(3600%M)*(V/A)*(py, /(A *e Q1987 D))
[(Cpo-Cip) — M¥S*10+(A/V)*(p,o/py) *A e Q#1987 D]} hours

Input required is:

1. Alloy data: py; Cg,; Cgy, (need to measure Cg,)

2. Oxide data: pa; M; S; (constants based on oxide/alloy stoichiometry)
3. Alloy oxidation descriptors: Arrhenius data A,, Q,; A5, Q;, and A, Q.
4. The metal temperature (T), and the component size (V/A)
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Summary of Oxidation Kinetics

Temperature, °C
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Some alloys haven't run long enough to
establish the Stage 3 oxidation rate
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Calculated Lifetimes
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Calculated vs Observed Lifetimes
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Calculated vs Observed Lifetimes
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Calculated Lifetimes at 1100°C

| !
ODS-Fe Al
2 PM2000 3 ‘
=l
\> /
3 10° / Z= TUBE
ODM?751 1in OD x 0.1in
X (25.4 x 2.54 mm),
V/IA =0.64 mm
_—
Based on Cg, values:
FeCrAls--0.001
MA9S6H T | MA9S6 g
10* y Fe,Al--0.056
2000 y ) CBb is difficult to
measure
7/ T
6000 // Data for 1100°C/2012°F— ° don’t know if it is T-
] | | | dependent
0.2 0.4 0.6 0.8 1

OAK RIDGE NATIONAL LABORATORY V/A
U. S. DEPARTMENT OF ENERGY , IMIN UT-BATTELLE

23



Cross section of scale on MA956H

1 um
> — - A
voids in Al,O, scale 1 ‘ I ') ‘ r
(not many) | 5
| ~ | | ALO, scale
A4
100h’ 1200°C’ air Allov substrate Karren More (875 + 876)
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Alloy-oxide interface on MA956H

Y-containing particles in alloy
There is also Y-enrichment at Al,O,
grain boundaries (not shown)

25
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cale cross section on MA956

e _— A

, voids in AL,O, scale [~
(many more )

thicker AlL,O, scale

elongated Y-Ti-Si-C grain L__ L than on 956H

(no oxygen!) ~4 mm long

bars show ends of grain)

between Al,O, grains (red F! | A

TiC particle
at interface

100h, 1200°C, air

E

l/' v Karren More (881 + 882)
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Current approach under-predicts
oxidation lifetime

* Predictions should be conservative!
* Are lab results overly affected by specimen shape?
* V/Ais a ‘shape factor,” but doesn’t discriminate among parallelepipeds

* Other shapes:

Shape Thickness | Length | Width | Surface area | Volume VIA
mm mm mm mm? mms3 mm

N = sl
Standard 1.6 23 12.5 686 460 0.67

parallelepiped o

Cylinder \23 / 5 /100\ \@/ 113
Parallelepiped-2 \1 6 14 12.5 \435 / /28(“ 0.64
Disc \6/ 15 353 \283y 0.80




Effect of Specimen Shape
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Possible Shape Factors
I

*
ﬁb

dDe N chm d
ch \ \}E] 5
‘ . center
of mass W
d/2 dmin = d/2

Shortest diffusion path from center of specimen thickness to outer
surface (d..;.) is given by locus of surface of a sphere of radius = d/2

dp, = diffusion length to an edge
dp. = diffusion length into a corner

Longest diffusion path is from the center of mass (= dp.,,)




Shape

Factors: Diffusion Lengths

Shape Edge Corner Center of Mass
dp, dp. dpen
P’piped 0.707 x d 0.866 x d 0.5 x sqrt(l? + w? + d?)
Cylinder = 0.707 x diam 0.5 x sqrt(1? + diam?)
Disc 0.707 x d 0.707 x d 0.5 x sqrt(d? + diam?)

d = specimen thickness

| = specimen length

w = specimen width

OAK RIDGE NATIONAL LABORATORY
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Summary

* Joining
—3 routes are being evaluated
— inertia welding--controlled microstructural distortion

— plasma-assisted diffusion--clean joints (?); examining reinforced design
— TLP bonding--questions about amount of residual elements and their effects

—significant effort on other techniques in the Vision 21-SM project

—Temperature limits
—generating data for all available ODS-FeCrAls

—have an initial working model for life prediction
— continuing long-term exposures to validate and improve the model
—issues of over-prediction, and the influence of shape

—lifetimes of 30-70kh at 1100°C in air for typical tube sizes
—continuing to generate data in steam, other environments
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Sensitivity to Cg,
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