ODS Alloy Development

Ian Wright, Bruce Pint, Claudette McKamey

Oak Ridge National Laboratory

17th Annual Fossil Energy Materials Conference Baltimore, Maryland, April 22-24, 2003

Goal: Facilitate the Exploitation of ODS Alloys

Barriers:

- Joining
- Highly-directional properties: for tubes, transverse strength << axial
- Unusual mechanical behavior; strain-rate sensitivity/mode of failure
- Cost

Options:

- Unconventional joining approaches
- Innovative processing to obtain the desired microstructure
- Improved quantification of alloy properties and characteristics so that there are no surprises

Scientific approach:

- · Understand and quantify all available routes for joining
- Develop mechanistic understanding for understanding how to control the alloy microstructure; and of the oxidation behavior

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Why ODS Alloys?

- Creep strength to temperatures > conventional high-temperature alloys
- Potential for use to temperatures where typically ceramics are considered
- Excellent oxidation resistance
- Resistance to sulfidation; steam oxidation
- Current Focus: ODS-FeCrAl alloys

Related work:

- Special Metals Inc: ODS tubing
- European COST programs
- SBIR at MER Corp.
- ARM programs:
 - -Foster Wheeler
 - -UCSD
 - –U. Liverpool
- ORNL: 'nano-clusters'

Alloys of Interest

Alloy	C	ompo	sition	Remarks		
	Fe	Cr	Al	other	RE	
ODS-Fe ₃ Al	Bal	2.2	15.9	Ti,Si	Y ₂ O ₃ -Al ₂ O ₃	ORNL development
MA956	Bal	20	4.5	Ti	Y ₂ O ₃ -Al ₂ O ₃	Special Metals Inc.
MA956H	Bal	21.6	5.7	Ti,Si	Y ₂ O ₃ -Al ₂ O ₃	956 modification
PM2000	Bal	20	5.5	Ti	Y ₂ O ₃ -Al ₂ O ₃	Plansee
ODM751	Bal	16.5	4.5	Ti	Y ₂ O ₃ -Al ₂ O ₃	Dour Metal
Kanthal APM	Bal	20	5.5	Ti,Si	'ZrO ₂ -Al ₂ O ₃ '	oxidation comparator

Presentation Content

- Joining
- Temperature limits
 - -fireside/steam-side compatibility
- Mechanical properties
 - -transverse (hoop) strength
- ODS-specific issues
 - strain-sensitivity/mode of failure

Joining of ODS Alloys

Joining must avoid

- redistributing the Y₂O₃ dispersed phase
- changing the grain structure size/shape/orientation

• Challenges:

- fusion processes: probably a last resort
 - brazing in COST-522 program
- friction/inertia welding: distortion of microstructure
- diffusion bonding
 - >TLP: successfully demonstrated on other ODS
 - plasma-assisted diffusion bonding: MER Corp
- others:
 - explosive bonding: successfully demonstrated (COST-501)
 - > pulsed magnetic welding
- > mechanical--threading + brazing
 OAK RIDGE NATIONAL LABORATORY

U. S. DEPARTMENT OF ENERGY

Tested Configurations for ODS Joints

Other Possible Configurations for ODS Joints

Reinforced joints

Inertial welded tube-to-flange joint

Inertia welding of MA-956 tubes

B. Kad/Interface Welding

- 63.5 mm diam. x 7 mm wall thickness, unrecrystallized MA-956 tube
- mechanically robust joints have be produced in using inertia welding
- process window was determined based on the integrity of the joint in bend tests in coupons cut from joined tubes
- reproducibility of joining parameters is excellent

Very sharp demarcation of deformed microstructure after inertia welding

Plasma-Assisted Diffusion Bonding

Bond line

- MER Corp-SBIR-II
- · 'clean' joint
- thin joined zone
- apparent grain continuity

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Bond-line exhibits Ti-rich precipitates Bond line 10pm WD11mm $\times 1,000$ • EPMA suggests an accumulation of Ti, AI, Y, and O along the bond line predominantly Ti alloy contains approx. 0.5 %Ti_x 12

TEM indicates discrete particles

Particles are TiC and Al₂O₃

Image Karren More (858 + maps 859...)

TLP Joining: Collaborative Effort

Extent of interdiffusion

Bond line

- EERC-N.A. Bornstein-ORNL
- TLP approach based on concepts demonstrated for HiPPS joints
- special considerations for application to an alumina scale-forming alloy
- proof-of-concept TLP alloy

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Temperature Limits

The basis for modeling the oxidation-limited lifetimes of these alloys is relatively straightforward, since:

- they form essentially Al₂O₃ scales that are uniform in thickness
- there is negligible internal attack (life can't be equated to section thinning)
- the Al concentration gradient in the alloy is flat until very near the end of life

As a result, it is possible simply to equate the oxidation lifetime to the rate of consumption of the available Al to form the alumina scale:

Life = Al available for oxidation/oxidation rate

The oxidation kinetics of these alloys have a characteristic form

U. S. DEPARTMENT OF ENERGY

17

Current Model

The current expression of the model is:

$$t_b = \{ [S*10^{-4*}\rho_A*A_\tau*e^{-Q\tau/(1.987*T)}]^2/(3600*A_2*e^{-Q2/(1.987*T)}) \} + \\ \{ [1/(3600*M)*(V/A)*(\rho_M/(A_3*e^{-Q3/(1.987*T)}))* \\ [(C_{Bo}-C_{Bb}) - M*S*10^{-4*}(A/V)*(\rho_A/\rho_M)*A_\tau*e^{-Q\tau/(1.987*T)}] \} \text{ hours}$$

Input required is:

- 1. Alloy data: ρ_M ; C_{Bo} ; C_{Bb} (need to measure C_{Bb})
- 2. Oxide data: ρ_A ; M; S; (constants based on oxide/alloy stoichiometry)
- 3. Alloy oxidation descriptors: Arrhenius data A₂, Q₂; A₃, Q₃, and A_τ, Q_τ
- 4. The metal temperature (T), and the component size (V/A)

Summary of Oxidation Kinetics

Some alloys haven't run long enough to establish the Stage 3 oxidation rate

Calculated Lifetimes

OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Calculated vs Observed Lifetimes

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Calculated vs Observed Lifetimes

Reasonable predictions for 1100-1300°C

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Calculated Lifetimes at 1100°C

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Cross section of scale on MA956H

Al₂O₃ scale

100h, 1200°C, air

(not many)

Karren More (875 + 876)

Alloy-oxide interface on MA956H

Y-containing particles in alloy There is also Y-enrichment at Al₂O₃ grain boundaries (not shown)

Scale cross section on MA956

(many more)

TiC particle

at interface

thicker Al₂O₃ scale than on 956H

100h, 1200°C, air

Karren More (881 + 882)

Current approach under-predicts oxidation lifetime

- Predictions should be conservative!
- Are lab results overly affected by specimen shape?
- V/A is a 'shape factor,' but doesn't discriminate among parallelepipeds
- Other shapes:

Shape	Thickness	Length	Width	Surface area	Volume	V/A
	mm	mm	mm	mm ²	mm ³	mm
Standard parallelepiped	1.6	23	12.5	686	460	0.67
Cylinder		23	5	400	452	1.13
Parallelepiped-2	1.6	14	12.5	435	280	0.64
Disc	1.6		15	353	283	0.80

Effect of Specimen Shape

Possible Shape Factors

Shortest diffusion path from center of specimen thickness to outer surface (d_{min}) is given by locus of surface of a sphere of radius = d/2

d_{De} = diffusion length to an <u>edge</u>

d_{Dc} = diffusion length into a corner

Longest diffusion path is from the <u>center of mass</u> (= d_{Dcm})

Shape Factors: Diffusion Lengths

Shape	Edge	Corner	Center of Mass		
	d _{De}	d _{Dc}	d _{Dcm}		
P'piped	0.707 x d	0.866 x d	$0.5 \times \text{sqrt}(I^2 + w^2 + d^2)$		
Cylinder		0.707 x diam	0.5 x sqrt(l ² + diam ²)		
Disc	0.707 x d	0.707 x d	0.5 x sqrt(d ² + diam ²)		

d = specimen thickness

I = specimen length

w = specimen width

Summary

Joining

- —3 routes are being evaluated
 - inertia welding--controlled microstructural distortion
 - plasma-assisted diffusion--clean joints (?); examining reinforced design
 - TLP bonding--questions about amount of residual elements and their effects
- -significant effort on other techniques in the Vision 21-SM project

—Temperature limits

- —generating data for all available ODS-FeCrAls
- –have an initial working model for life prediction
 - continuing long-term exposures to validate and improve the model
 - issues of over-prediction, and the influence of shape
- —lifetimes of 30-70kh at 1100°C in air for typical tube sizes
- —continuing to generate data in steam, other environments

Sensitivity to C_{Bb}

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY