Development of Brazing Technology for Use in High-Temperature Gas Separation Equipment

17th Annual Conference on Fossil Energy Materials

Baltimore, Maryland April 22-24, 2003

K. S. Weil, J. Y. Kim, and J. S. Hardy

Pacific Northwest National Laboratory Richland, WA 99352

Battelle

• Vision 21 Technical Roadmap:

"Develop coal as a potential source of clean hydrogen fuel for use in fuel cells, turbines and various process applications."

- To realize this goal, we need efficient, low cost gas separation systems to produce :
 - ► Oxygen from air for combustion (avoids N₂ dilution and NO_x formation)
 - ► Hydrogen from the gasified coal stream (produces higher yield product due to water-gas-shift reaction)
 - Carbon dioxide for sequestration

Battelle

- The primary enabling materials technologies in manufacturing these gas separation systems:
 - Separation membranes (ceramic)
 - ► Gas manifold and support structures (heat resistant metal)
 - ► Membrane-to-support (ceramic to-metal) seals

Battelle

O₂ Separation

<u>Type</u> <u>Material</u>

Electrically Driven YSZ, CeO₂

Pressure Driven MIEC

Chemical Potential Driven MIEC

Electrically Driven:

Apps.: Medical O₂

Cutting O₂

Pressure Driven:

O₂ Reaction Product High Pressure Air Air

Apps.: Tonnage O₂ Co-gen

Syngas with co-gen

Apps.: Syngas

Gas-to-liquid

Chemical Potential Driven:

H₂ production

Direct FE Support

Battelle

• H₂ Separation

<u>Type</u> <u>Material</u>

Pressure Driven Porous Al₂O₃

Chemical Potential Driven BaCeO₃

Pressure Driven:

Direct FE Support

Chemical Potential Driven:

Being considered
– wetting studies
show feasibility

Solid Oxide Fuel Cells

Material

YSZ

 $(La_{0.8}Sr_{0.2})FeO_3$

Battelle

Project Objectives

- Develop joining/sealing technology for high temperature electrochemical devices
- Barriers/Challenges
 - Hermeticity is key
 - Resist degradation at high temperature/extended exposure time
 - CTE mismatch is inherent in joining dissimilar materials
 - Resistance to thermal cycling/thermal shock degradation
 - Retain mechanical robustness in the joint and device

Options

- High-temperature glass-ceramics
- Compressive sealing
- Brazing
- Scientific Approach
 - Examine the application of a new brazing technology to the various ceramic-metal systems of interest in high-temperature electrochemical devices
 - Understand the materials and processing variables that are key to obtaining high integrity, long-lasting seals

Current Status of Sealing Technology

- Glass-Ceramic (BAS-based)
 - Hermetic
 - Good stability in air and H₂ environments
 - Good wetting on stainless steel and ceramics such as Al₂O₃ and YSZ
 - Poor thermal shock characteristics
 - Long-term CTE not stable problems with thermal cycling

- Compressive (Mica or Metal)
 - CTE matching not required
 - Good stability in air and H₂ environments
 - Excessive leak rate even under high compression
 - Load frame required Battelle

Why Traditional Metal-Ceramic Brazing is not Feasible

- Potential problems with membrane decomposition
 - **→** T_{soak}: 1000°C 1100°C
 - \rightarrow t_{soak} : 15 30min
 - P_O; 10⁻⁶ atm

Interface detachment

- Problems with braze oxidation
 - $T_{oxid} = 700^{\circ}C$
 - \rightarrow $t_{oxid} = 50hrs$
 - P_{O_2} : 0.2 atm

Battelle

New joining Technique: Reactive Air Brazing

- Concept: reactive/wetting compound dissolved in a noble metal solvent
 - Compound can react with or wet the MIEC and/or metal oxide scale
 - ► Examples: Ag-CuO, Ag-TeO₃, and Pt-Nb₂O₅
 - Noble metal filler offers a compliant medium
- Joining in air
 - Simplifies processing
 - More cost effective
 - Joint should be oxidation resistant

Battelle

New joining Technique: Reactive Air Brazing

The CuO-Ag System

Shao et al, *J. Am. Ceram. Soc.* [1993] 2663

- The CuO-Ag system displays a monotectic point and a eutectic point)
- CuO known to react with Al₂O₃
 - **Can form CuAlO₂ ~900 − 1000°C**
 - CuO-Ag melts wet Al₂O₃ (Meier et al, *J. Mat. Sci.* [1995] 4781)
 - Cu-Ag melts wet YSZ (Hao et al, *J. Am. Cer. Soc.* [1995] 2157)
- Al₂O₃ scale forming steels top candidates for balance of plant in electrochemical devices

Battelle

Experimental Methodology

Wetting Studies

- Wetting angle measured as a function of braze and substrate composition, joining temperature, and time at temperature
- Braze/substrate interfaces evaluated by SEM and EDX

Adhesion and Joint Strength

- Joint strength/adhesion measured by a number of techniques, including: 4-pt bend, tension, torsion, rupture, and peel testing
- Measured as a function of braze and substrate composition, joining temperature, and time at temperature

Exposure Testing

- **→** Joints are aged at expected operating temperature in the appropriate atmosphere(s): air, wet H₂, or dual atmosphere
- Joint strength measured as a function of exposure

Thermal Cycling and Thermal Shock

 Joints are cycled between room and operating temperature. Testing can be heating rate dependent

Other Testing

Electrical resistivity measurements

> Electrochemical stability testing

Battelle

Oxygen Separation

Wetting Studies

Battelle

Application: Solid State Oxygen Separation Devices

Wetting of (La_{0.6}Sr_{0.4})(Co_{0.2}Fe_{0.8})O₃ (LSCoF) by Ag-CuO and Ag-CuO-TiO₂

- Wetting improves with increased CuO content.
- The improvement is accentuated by the addition of TiO₂.

Battelle

Pacific Northwest National Laboratory

Wetting of LSCoF by Ag-CuO: Microstructures

- Low CuO content: discrete droplets of CuO precipitate onto the surface of the LSCoF
 - No reaction between CuO and LSCoF observed
 - Ag infiltrates micron scale porosity within the LSCoF

- High CuO content:
 - CuO forms a continuous layer on the faying surface
 - More Ag infiltration apparent

Battelle

Wetting of LSCoF by Ag-CuO-TiO₂: Microstructures

- A reaction zone forms on the LSCoF faying surface
 - Reaction occurs along LSCoF grain boundaries
 - Formation of an obvious irontitanium oxide phase

- Grain boundary reaction can be mitigated by reducing TiO₂ content
 - Study underway to examine the effect of TiO₂ content on wetting, adhesion, and joint strength

Battelle

Hydrogen Separation

Wetting Studies
Exposure Testing
Joint Strength Testing

Battelle

Application: Hydrogen Separation Device

Wetting of Al₂O₃ by Ag-CuO

Contact angle is minimized at the monotectic composition:

Microstructural Analysis of RAB Al₂O₃ in As-Joined Condition

CA8020 (joined at 1100°C)

CA7030 (joined at 1000°C)

CA6931 (joined at 1000°C)

CA0199 (joined at 1000°C)

Battelle

Microstructural Analysis of RAB Al_2O_3 in As-Aged Condition (500hrs, 800°C H_2)

CA8020 (joined at 1100°C)

CA7030 (joined at 1000°C)

CA6931 (joined at 1000°C)

CA0199 (joined at 1000°C)

Battelle

Four-Point Bend Strength Testing of Al₂O₃/Ag-CuO/Al₂O₃ Joints

Fracture strength increases with lower CuO content:

Fuel Cells

Joint Strength Testing
Thermal Shock/Cycle Testing

Battelle

Application: Solid Oxide Fuel Cell

Typical Operating Conditions:

• $T = 750^{\circ}C$

Sealing Surface

Ni-Based Anode

(~600mm)

- $t_{(at 750^{\circ}C)} \sim 5000 + hrs$
- Exposed to air and reducing gas simultaneously

Oxide Cathode (~10mm)

YSZ Electrolyte (~10mm)

Battelle

SOFC Stack Manufacture

PEN – sealed to SS window frame using Ag-CuO

Dual 30 cell Stack APU

Battelle

As-Brazed 5YSZ/FeCrAly Joint

Battelle

Rupture Strength Testing

- Measured rupture strength of Ag-4CuO brazed bilayer/FeCrAlY joints
 - > In the as-brazed condition
 - ▶ After aging in wet H₂ or ambient air at 750°C
 - ▶ After thermal cycling in ambient air from RT to 750°C to RT at 5°C/min

Battelle

Rupture Strength Results

Thermal Shock Testing

Seal remains hermetic after testing through five thermal cycles

Technology Transfer

- O₂ Generation
 - **Litton Corporation**
 - Battelle Memorial Institute

Small-scale devices for medical and military applications

- SOFCs
 - Delphi
 - **▶** BMW
 - Elring Klinger

SOFC APUs for transportation applications

Battelle

Potential New Functional Material Application for Ag-CuO

Battelle

Exploratory Study: Composite Separation Membranes

• Investigation of a dual phase membrane for oxygen ion transport:

J. Kim, Y. S. Lin, AIChE J. 46 (2000)

15 vol% AgCuO-4 in CeO₂

- The RAB braze and an appropriate electrolyte can be simultaneously processed into a nanoscale composite:
 - ► Intimate mixing and better phase adhesion and contact, potentially improving transport characteristics
 - ► Potentially offers improved chemical stability
 - Mechanical properties can be optimized

Summary

- Developed a new joining technique specifically for high temperature electrochemical applications: Reactive Air Brazing
 - Exploits liquid-liquid solubility between noble metals and low melting oxides
 - Can be conducted in air
 - **→** Offers good wetting with YSZ, MIECs, and Al₂O₃
 - Braze is stable under high temperature oxidizing conditions
 - Offers good joining strength which is retained after oxidation
- Have examined RAB for use in O₂ separation devices, H₂ separation devices, and SOFCs
 - Wetting and adhesion properties of the braze can apparently be optimized for a given materials system (i.e. ceramic membrane/metal support combination)
 - RAB appears to offer very good joints strengths in the as-brazed condition and withstands exposure to high temperature air and wet H₂ environments for up to ~1000hrs
 - RAB sealing can be thermally cycled and rapidly heated and cooled without adverse effects

Acknowledgements

- Nat Saenz and Shelly Carlson metallography
- Jim Coleman scanning electron microscopy
- Support: U. S. DOE, Office of Fossil Energy

Battelle