Concepts and Materials Needs for Condition-Monitoring Sensors

J. E. (Jim) Hardy

Leader, Sensor and Instrument Research Group Oak Ridge National Laboratory

17th Annual Conference on Fossil Energy Materials April 24, 2003

Outline of Presentation

- Sensor uses, functionality, and priorities
- Sensor requirements and material needs
- Commercially available measurement systems
- Next generation technologies and material development areas
- Summary

Sensors Required for High Performance, Improved Reliability and Control

- Goals for Sensor and Controls
 - Increase operational efficiency
 - Higher yield
 - Less energy used
 - Less waste generated
 - Reduce emissions
 - Lower operating costs
 - Safety and equipment protection

Sensors Functionality

- Rugged & robust
- Reliable quality data, low maintenance, and survive at least one year
- Preferred non-intrusive or embedded in structures
- On-line and real-time
- Self-calibrating and self-diagnostics
- Cost is important

Measurement Priorities

- Flame Imaging (species, uniformity, shape)
- Combustion efficiency (CO and O_2)
- Particulates (size, concentration, velocity)
- Emissions (NOx, SOx, Hg, CO₂, HCl)
- Air/fuel Ratio
- Temperature (surfaces and gas)

Diagnostic Needs (NDE techniques)

- Monitoring of corrosion
- Monitoring of coatings
- Refractory contouring
- Equipment component degradation
- Sensor self-diagnostics

Sensor Measurement Requirements Are Very Challenging

- Temperatures: 700° C to 2500° C
- Pressure: 100 500 psig
- Oxidizing and Reducing Atmospheres
- Particulates (fly ash)
- Slagging (hot, sticky, heavy)

Material Needs Are Many and Varied

- Thermowells for thermocouples
 - Corrosion and erosion
- Non-fouling optical windows/ports
- Optical fibers for high temperatures
- Fusion of high temperature materials and sensors (embedded)
- Nanomaterials (high temperature gradients, high mechanical stresses, modeling)
- Lifetime prediction and reliability models
- SiC cost, metal oxides/ceramics, catalysts and electrolytes

High Temperature Fossil Measurements

- NGK zirconia O₂ probe with ceramic sheath
- Rosemount and Ametek CO catalytic bead sensor (yttria-stablized zirconia)
- Tunable diode laser (TDL) technology for CO and O₂
 - Unisearch and Boreal

In-situ Probe

TDL

Non-contact Thermometry for Gasifiers

- Texaco has developed an infrared ratio pyrometer
 - Fast response
 - More reliable than thermocouples
 - Materials developed for optical access port
 - Testing soon to be underway in a power station
- Acoustic thermometry by STOCK/CSI and SEI Boilerwatch
 - 2-D profiles across entire scanned area
 - Non-intrusive, reduces material issues

Current Research in High Temperature Sensing

- Flame Temperature sensor (GE/Sandia/NETL) high bandgap semiconductor photodiode (AlGaN) and SiC UV photodiode: Tracks flame dynamics
- Coating life odometer taggants detect incipient coating loss (GE/Sandia/NETL)
- SiC based gas sensors (> 900°C) Michigan State and West Virginia Universities
- Metal oxide-based sensors for gases (NO, CO,
 CO₂, NO₂, NH₃, and SO₂) Sensor Research and
 Development Corp.

Fiber-Optic Thermometry Offers Highly Reliable, Accurate Temperature

Measurements

- Non-contact phosphor thermometry
 has been demonstrated by ORNL,
 Fluoroscience, and others for turbine,
 steel processing, and automotive
 diagnostics over the past 10 years
- Temperatures measured to 1700^o C using laser and phosphors
- VPI has developed single crystal sapphire shown effective to 1600° C in harsh environments
- Zirconia prism and alumina extension tubes used to 1500° C
- Needs include window materials and sheathing for fibers

Phosphor luminescence

Micro-optic temperature sensor

Figure 1: Configuration of PLIS System

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

ORNL Sensor Development for High Temperature, Harsh Environments

- NO_X, O₂, and NH₄ sensor development in progress
 - planar O₂ sensor developed with output proportional to partial pressure;
 response time diffusion
 barrier/geometry dependent,
 demonstrated to 1100° C
 - low-cost NO_X demonstrated to 700°C;
 commercialization partner on board
 - resistive mixed potential sensors for NO_X, NH₄, H₂S, hydrocarbons with potential for lower cost and easier to produce

Real-time Corrosion Sensors

- Electrochemical noise principle
- Dual working electrodes representing the material under evaluation
- Monitors fluctuation in potential & current noise
- Assesses general corrosion (pitting, etc.) and relative intensity
- Need high temperature insulator

Thermowell Material Development

- Wells needed to protect thermocouple from aggressive environment
- Current materials degrade in weeks
- Need to develop appropriate metallic and ceramic phase chemistry/evolution
- Consider dispersed reservoir (DR) approach
- May be possible to design a composite alloy structure with capability to resist oxidation, sulfidation, carburization, and/or molten salt/slag attack

NDE for System Diagnostics

- Condition monitoring of thermal barrier coatings (TBC)
 - ANL's IR imaging and laser scattering
 - ORNL's TBC doped with phosphors in layers
- Advanced signal processing (chaos, neural nets, etc.)
 - Pressure signals, gas concentrations, flame qualities (B&W's Flame Doctor)
 - Better sensors (materials) will result in improved diagnostics
- Robots that can withstand high temperature/corrosive environments – platform for visual and physical measurements for tube surfaces and thickness, coatings, refractories

Thermomechanical Reliability and Life Prediction of Sensors

- Sensor design needs understanding of thermal-chemical-mechanical stress state coupled with potential thermomechanical performance of sensor materials
- Thermal expansion mismatches, residual stresses, thermal transients effects minimized by design
- Validated models require theory, material characterization, and experimental data (corrosion, environmental, etc.)

Next Generation High-Temperature Multi-Species Gas Sensors

- Built on multilayer ceramic sensor demonstrated concepts
- Simultaneously measure O₂, NO_x, NH₃, and SO₂ for example
- Development of catalyst, diffusion barriers, species specific materials, electrodes
- Kinetics at catalyst surface (influence of electric potentials)
- Incorporate reliability/life prediction models

High Temperature MEMS Sensors

- SiC MEMS array for multiple gases – H₂O, Hg, NO_x, CO, S, H₂
- Microcantilever technologies with coatings for multiple gas species
- Potential to 1200°C and low-cost

Figure 1. A typical Si MC array used in previous studies to monitor analyte adsorption on the MC surface. Analyte-induced deflection, Δz , is depicted with inset

Next Generation High-Temperature Multi-Species Gas Sensors

- Couple MEMS with micro-optics
 - Micro-scale Midwave IR sampling cell on a chip
 - Integration of miniature black body source and off-chip detector
- Measure H₂, NO_x, S, CO, and Hg simultaneously
- Develop and characterize high temperature IR materials and blackbody source

Integrated TLIR Array Chemical Sensor

Robust Light Source for High Temperature Corrosive Environments

- Approach based on electroluminescence (EL) of ceramic phosphor materials in the UV range
- EL device comprised of high temperature materials quartz, ceramics, and metal
- Uses ultraviolet emitting phosphors under AC excitation
- Testing and modeling needed to evaluate durability, operability at high temperatures, thermal cycling, and corrosion resistance
- Potential to be embedded in structures

Figure 1. Typical EL device configuration.

Nanosize Sensors for Harsh Environments by NASA and ORNL

Carbon Nano-tubes for high Temperature Sensing

- •Nanotubes can be deterministically sized and located
- •Withstand high temperatures, up to 2000°C
- Very robust
- •Needs include material characterization, synthesis, and automated fabrication techniques

OAK RIDGE NATIONAL U. S. DEPARTMENT OF

Sensing for FE Processes is Very Challenging Multidisciplined Approach Is Needed for Sensor Development

- Expertise in material synthesis, various transduction methods, high temperature electronics, packaging, and advanced signal processing
- Experience in harsh environments (high temperature, toxic/corrosive, particulates)
- Facilities for developing, prototyping, testing, and characterizing sensor concepts, robustness, and sensitivities

Multidisciplined Approach Is Needed for Sensor Development

- Material characterization technologies
- Theory, modeling, and simulation of thin films, interfaces and boundaries, defects, material synthesis, nanoscale particles and interactions
- Massively parallel software & hardware
- Excellent opportunity for teaming with National Labs, Universities, and Industry

